版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省常州市金坛区白塔中学2024届八年级数学第二学期期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.甲、乙两人在相同的条件下,各射靶10次,经过计算:甲、乙射击成绩的平均数都是1环,甲的方差是1.2,乙的方差是1.1.下列说法中不一定正确的是()A.甲、乙射中的总环数相同 B.甲的成绩稳定 C.乙的成绩波动较大 D.甲、乙的众数相同2.下列分式,,,最简分式的个数有()A.4个 B.3个 C.2个 D.1个3.若分式有意义,则x的取值应该该满足()A.x= B.x= C.x≠ D.x≠4.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,则点C的纵坐标y与x的函数解析式是()A.y=x B.y=1﹣x C.y=x+1 D.y=x﹣15.如图,四边形是平行四边形,对角线、交于点,是的中点,以下说法错误的是()A. B. C. D.6.一元二次方程的根是()A. B. C., D.,7.下列关系式中,y不是x的函数的是()A.y=x+1 B.y= C.y=﹣2x D.|y|=x8.在ABCD中,AB=3cm,BC=4cm,则ABCD的周长是()A.5cm B.7cm C.12cm D.14cm9.甲、乙两台机床同时生产一种零件,在5天中,两台机床每天出次品的数量如下表:甲01202乙21011关于以上数据的平均数、中位数、众数和方差,说法不正确的是()A.甲、乙的平均数相等 B.甲、乙的众数相等C.甲、乙的中位数相等 D.甲的方差大于乙的方差10.若关于x的不等式组的整数解有3个,则a的取值范围是()A.3<a≤4 B.2<a≤3 C.2≤a<3 D.3≤a<4二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中直线y=−x+10与x轴,y轴分别交于A.B两点,C是OB的中点,D是线段AB上一点,若CD=OC,则点D的坐标为___12.如图,已知正方形的边长为,则图中阴影部分的面积为__________.13.如图,在平面直角坐标系中,▱ABCD的顶点坐标分别为A(3,a)、B(2,2)、C(b,3)、D(8,6),则a+b的值为_____.14.点A(a,b)是一次函数y=x+2与反比例函数的图像的交点,则__________。15.将函数的图象向上平移3个单位长度,得到的函数图象的解析式为______.16.如图,正方形的边长为6,点是上的一点,连接并延长交射线于点,将沿直线翻折,点落在点处,的延长线交于点,当时,则的长为________.17.如图,,矩形ABCD的顶点A、B分别在OM、ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,则运动过程中,点C到点O的最大距离为___________.18.如图,菱形的边长为1,;作于点,以为一边,作第二个菱形,使;作于点,以为一边,作第三个菱形,使;…依此类推,这样作出第个菱形.则_________._________.三、解答题(共66分)19.(10分)某校为了解“阳光体育”活动的开展情况,从全校2000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)被调查的学生共有人,并补全条形统计图;(2)在扇形统计图中,m=,n=,表示区域C的圆心角为度;(3)全校学生中喜欢篮球的人数大约有多少?20.(6分)在一次夏令营活动中,主办方告诉营员们A、B两点的位置及坐标分别为(-3,1)、(-2,-3),同时只告诉营员们活动中心C的坐标为(3,2)(单位:km)(1)请在图中建立直角坐标系并确定点C的位置;(2)若营员们打算从点B处直接赶往C处,请用方向角B和距离描述点C相对于点B的位置.21.(6分)阅读下列解题过程,并解答后面的问题:如图,在平面直角坐标系中,,,C为线段AB的中点,求C的坐标.解:分别过A,C作x轴的平行线,过B,C作y轴的平行线,两组平行线的交点如图1.设C的坐标为,则D、E、F的坐标为,,由图可知:,∴C的坐标为问题:(1)已知A(-1,4),B(3,-2),则线段AB的中点坐标为______(2)平行四边形ABCD中,点A、B、C的坐标分别为(1,-4),(0,2),(5,6),求D的坐标.(3)如图2,B(6,4)在函数的图象上,A的坐标为(5,2),C在x轴上,D在函数的图象上,以A、B、C、D四个点为顶点构成平行四边形,直接写出所有满足条件的D点的坐标.22.(8分)如图,一次函数与反比例函数的图象交于,两点(1)求一次函数的解析式;(2)根据图象直接写出关于的不等式的解集;(3)求的面积.23.(8分)如图,E是正方形ABCD的边AD上的动点,F是边BC延长线上的一点,且BF=EF,AB=12,设AE=x,BF=y.(1)当△BEF是等边三角形时,求BF的长;(2)求y与x的函数解析式,并写出它的定义域;(3)把△ABE沿着直线BE翻折,点A落在点A′处,试探索:△A′BF能否为等腰三角形?如果能,请求出AE的长;如果不能,请说明理由.24.(8分)如图,在矩形OABC中,点A在x轴上,点C在y轴上,点B的坐标是,将沿直线BD折叠,使得点C落在对角线OB上的点E处,折痕与OC交于点D.(1)求直线OB的解析式及线段OE的长.(2)求直线BD的解析式及点E的坐标.25.(10分)铜仁市积极推动某公园建设,通过旅游带动一方经济,计划经过若干年使公园绿化总面积新增450万平方米.自2016年初开始实施后,实际每年绿化面积是原计划的1.5倍,这样可以提前3年完成任务.(1)求实际每年绿化面积是多少万平方米(2)为加大公园绿化力度,市政府决定从2019年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?26.(10分)某商贩出售一批进价为l元的钥匙扣,在销售过程中发现钥匙扣的日销售单价x(元)与日销售量y(个)之间有如下关系:(1)根据表中数据在平面直角坐标系中,描出实数对(x,y)对应的点;(2)猜想并确定y与x的关系式,并在直角坐标系中画出x>0时的图像;(3)设销售钥匙扣的利润为T元,试求出T与x之间的函数关系式:若商贩在钥匙扣售价不超过8元的前提下要获得最大利润,试求销售价x和最大利润T.
参考答案一、选择题(每小题3分,共30分)1、D【解析】解:A、根据平均数的定义,正确;B、根据方差的定义,正确;C、根据方差的定义,正确,D、一组数据中出现次数最多的数值叫众数.题目没有具体数据,无法确定众数,错误.故选D2、D【解析】
直接利用分式的基本性质化简得出答案.【详解】解:,不能约分,,,故只有是最简分式.最简分式的个数为1.故选:D.【点睛】此题主要考查了最简分式,正确化简分式是解题关键.3、C【解析】
由题意根据分式有意义的条件是分母不等于零列出不等式,解不等式即可得到答案.【详解】解:分式有意义,则2x﹣3≠0,解得,x≠.故选:C.【点睛】本题考查分式有意义的条件,熟练掌握分式有意义的条件即分母不等于零是解题的关键.4、C【解析】
过点C作CE⊥y轴于点E,只要证明△CEA≌△AOB(AAS),即可解决问题;【详解】解:过点C作CE⊥y轴于点E.∵∠CEA=∠CAB=∠AOB=90°,∴∠EAC+∠OAB=90°,∠OAB+∠OBA=90°,∴∠EAC=∠ABO,∵AC=AB,∴△CEA≌△AOB(AAS),∴EA=OB=x,CE=OA=1,∵C的纵坐标为y,OE=OA+AD=1+x,∴y=x+1.故选:C.【点睛】本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5、D【解析】
由平行四边形的性质和三角形中位线定理得出选项A、B、C正确;由OE≠BE,得出∠BOE≠∠OBC,选项D错误;即可得出结论.【详解】解:∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,AB∥DC,AB=CD,
又∵点E是BC的中点,
∴OE是△BCD的中位线,
∴OE=DC,OE∥DC,,
∴∠BOE=∠ODC,
∴选项A、B、C正确;
∵OE≠BE,
∴∠BOE≠∠OBC,
∴选项D错误;
故选:D.【点睛】此题考查了平行四边形的性质:平行四边形的对角线互相平分.还考查了三角形中位线定理:三角形的中位线平行且等于三角形第三边的一半.6、D【解析】
利用因式分解法解方程.【详解】∵x(x+3)=0,∴x=0,或x+3=0,解得x=0或x=−3.故选D.【点睛】本题主要考查解一元二次方程-因式分解法,熟悉掌握是关键.7、D【解析】
在某一变化过程中,有两个变量x,y,在某一法则的作用下,如果对于x的每一个值,y都有唯一的值与其相对应,这时,就称y是x的函数.【详解】解:A.y=x+1,y是x的函数;B.y=,y是x的函数.;C.y=﹣2x,y是x的函数;D.|y|=x,y不只一个值与x对应,y不是x的函数.故选D【点睛】本题考核知识点:函数.解题关键点:理解函数的定义.8、D【解析】
因为平行四边形的两组对边分别相等,则平行四边形ABCD的周长为2(AB+BC),根据已知即可求出周长.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,∴平行四边形ABCD的周长为2(AB+BC)=2×7=14cm.故选:D.【点睛】此题主要考查平行四边的性质:平行四边形的两组对边分别相等.9、B【解析】
根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;对于n个数x1,x2,…,xn,则(x1+x2+…+xn)就叫做这n个数的算术平均数;s2=进行计算即可.【详解】解:A、甲的平均数为1,乙的平均数为1,故原题说法正确;B、甲的众数为0和2,乙的众数为1,故原题说法不正确;
C、甲的中位数为1,乙的中位数为1,故原题说法正确;
D、甲的方差为,乙的方差为,甲的方差大于乙的方差,故原题说法正确;
故选B.【点睛】本题考查众数、中位数、方差和平均数,关键是掌握三种数的概念和方差公式.10、B【解析】解第一个不等式可得x<a+1,因关于x的不等式组有解,即1≤x<a+1,又因不等式组的整数解有3个,可得3<a+1≤4,即可得2<a≤3,故选B.点睛:本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.二、填空题(每小题3分,共24分)11、(4,8)【解析】
由解析式求得B的坐标,加入求得C的坐标,OC=5,设D(x,-x+10),根据勾股定理得出x+(x-5)=25,解得x=4,即可求得D的坐标.【详解】由直线y=−x+10可知:B(0,10),∴OB=10,∵C是OB的中点,∴C(0,5),OC=5,∵CD=OC,∴CD=5,∵D是线段AB上一点,∴设D(x,-x+10),∴CD=∴解得x=4,x=0(舍去)∴D(4,8),故答案为:(4,8)【点睛】此题考查一次函数与平面直角坐标系,勾股定理,解题关键在于利用勾股定理进行计算12、2【解析】
正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.【详解】解:依题意有S阴影=×4×4=2cm1.
故答案为:2.【点睛】本题考查轴对称的性质以及正方形的性质,运用割补法是解题的关键.13、12【解析】
如图,连接AC、BD交于点O′,利用中点坐标公式,构建方程求出a、b即可;【详解】解:如图,连接AC、BD交于点O′.∵四边形ABCD是平行四边形,∴AO′=O′C,BO′=O′D,∵A(3,a),B(2,2),C(b,3),D(8,6),∴,∴a=5,b=7,∴a+b=12,故答案为:12【点睛】此题考查坐标与图形的性质,解题关键在于构建方程求出a、b14、-8【解析】
把点A(a,b)分别代入一次函数y=x-1与反比例函数,求出a-b与ab的值,代入代数式进行计算即可.【详解】∵点A(a,b)是一次函数y=x+2与反比例函数的交点,∴b=a+2,,即a−b=-2,ab=4,∴原式=ab(a−b)=4×(-2)=-8.【点睛】反比例函数与一次函数的交点问题,对于本题我们可以先分别把点代入两个函数中,在对函数和所求的代数式进行适当变形,然后整体代入即可.15、【解析】
根据一次函数的图像平移的特点即可求解.【详解】函数的图象向上平移3个单位长度,得到的函数图象的解析式为+3,∴函数为【点睛】此题主要考查一次函数的性质,解题的关键是熟知一次函数平移的特点.16、【解析】
根据翻折变换的性质可得AN=AB,∠BAE=∠NAE,再根据两直线平行,内错角相等可得∠BAE=∠F,从而得到∠NAE=∠F,根据等角对等边可得AM=FM,设CM=x,表示出DM、AM,然后利用勾股定理列方程求出x的值,从而得到AM的值,最后根据NM=AM-AN计算即可得解.【详解】∵△ABE沿直线AE翻折,点B落在点N处,∴AN=AB=6,∠BAE=∠NAE,∵正方形对边AB∥CD,∴∠BAE=∠F,∴∠NAE=∠F,∴AM=FM,设CM=x,∵AB=2CF=8,∴CF=3∴DM=6−x,AM=FM=3+x,在Rt△ADM中,由勾股定理得,,即解得x=,所以,AM=3+=,所以,NM=AM−AN=−6=【点睛】本题考查翻折变换,解题关键在于熟练掌握勾股定理的性质.17、【解析】
取AB的中点E,连接OE、CE、OC,根据三角形的任意两边之和大于第三边可知当O、C、E三点共线时,点C到点O的距离最大,再根据勾股定理列式求出DE的长,根据直角三角形斜边上的中线等于斜边的一半求出OE的长,两者相加即可得解.【详解】如图,取AB的中点E,连接OE、CE、OC,∵OC⩽OE+CE,∴当O、C.E三点共线时,点C到点O的距离最大,此时,∵AB=2,BC=1,∴OE=AE=AB=1,CE=,∴OC的最大值为:【点睛】此题考查直角三角形斜边上的中线,勾股定理,解题关键在于做辅助线18、【解析】
在△AB1D2中利用30°角的性质和勾股定理计算出AD2=,再根据菱形的性质得AB2=AD2=,同理可求AD3和AD4的值.【详解】解:在△AB1D2中,∵,∴∠B1AD2=30°,∴B1D2=,∴AD2==,∵四边形AB2C2D2为菱形,∴AB2=AD2=,在△AB2D3中,∵,∴∠B2AD3=30°,∴B2D3=,∴AD3==,∵四边形AB3C3D3为菱形,∴AB3=AD3=,在△AB3D4中,∵,∴∠B3AD4=30°,∴B3D4=,∴AD4==,故答案为,.【点睛】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.菱形的面积等于对角线乘积的一半.也考查了锐角三角函数的知识.三、解答题(共66分)19、(1)学生总数100人,跳绳40人,条形统计图见解析;(2)144°;(3)200人.【解析】
(1)用B组频数除以其所占的百分比即可求得样本容量;(2)用A组人数除以总人数即可求得m值,用D组人数除以总人数即可求得n值;(3)用总人数乘以D类所占的百分比即可求得全校喜欢篮球的人数;【详解】解:(1)观察统计图知:喜欢乒乓球的有20人,占20%,故被调查的学生总数有20÷20%=100人,喜欢跳绳的有100﹣30﹣20﹣10=40人,条形统计图为:(2)∵A组有30人,D组有10人,共有100人,∴A组所占的百分比为:30%,D组所占的百分比为10%,∴m=30,n=10;表示区域C的圆心角为×360°=144°;(3)∵全校共有2000人,喜欢篮球的占10%,∴喜欢篮球的有2000×10%=200人.【点睛】考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20、(1)见解析;(2)点C在点B北偏东45°方向上,距离点B的5km处.【解析】
(1)利用A,B点坐标得出原点位置,建立坐标系,进而得出C点位置;
(2)利用所画图形,进而结合勾股定理得出答案.【详解】(1)根据A(-3,1),B(-2,-3)画出直角坐标系,描出点C(3,2),如图所示:(2)∵BC=5,∴点C在点B北偏东45°方向上,距离点B的5km处.【点睛】此题主要考查了坐标确定位置以及勾股定理等知识,得出原点的位置是解题关键.21、(1)(1,1);(2)D的坐标为(6,0);(3)D(2,2)或D(−6,−2)、D(10,6).【解析】
(1)直接套用中点坐标公式,即可得出中点坐标;(2)根据AC、BD的中点重合,可得出,,代入数据可得出点D的坐标;(3)分类讨论,①当AB为该平行四边形一边时,此时CD∥AB,分别求出以AD、BC为对角线时,以AC、BD为对角线的情况可得出点D坐标;②当AB为该平行四边形的一条对角线时,根据AB中点与CD中点重合,可得出点D坐标.【详解】解:(1)AB中点坐标为(,)即(1,1);(2)根据平行四边形的性质:对角线互相平分,可知AC、BD的中点重合,由中点坐标公式可得:,,代入数据得:,,解得:xD=6,yD=0,所以点D的坐标为(6,0);(3)①当AB为该平行四边形一边时,则CD∥AB,对角线为AD、BC或AC、BD;故可得:,或,,故可得yC−yD=yA−yB=2或yD−yC=yA−yB=−2,∵yC=0,∴yD=2或−2,代入到y=x+1中,可得D(2,2)或D(−6,−2).当AB为该平行四边形的一条对角线时,则CD为另一条对角线;,,∴yC+yD=yA+yB=2+4,∵yC=0,∴yD=6,代入到y=x+1中,可得D(10,6)综上,符合条件的D点坐标为D(2,2)或D(−6,−2)、D(10,6).【点睛】本题考查了一次函数的综合题,涉及了中点坐标公式、平行四边形的性质,难点在第三问,注意分类讨论,不要漏解,难度较大.22、(1);(2)或(3).【解析】
(1)把A和B代入反比例函数解析式即可求得坐标,然后用待定系数法求得一次函数的解析式;(2)不等式的解集就是:对于相同的x的值,反比例函数的图象在上边的部分自变量的取值范围;(3)根据三角形的面积公式即可得到结论.【详解】(1)把,代入中,得,∴,的坐标分别为,把,代入中,得解得∴一次函数的表达式为(2)根据图象得,不等式的解集为:或时.(3)设一次函数与轴相交于点,当时,∴点的坐标为∴【点睛】本题综合考查一次函数与反比例函数的图象与性质,同时考查用待定系数法求函数解析式.本题需要注意无论是自变量的取值范围还是函数值的取值范围,都应该从交点入手思考;需注意反比例函数的自变量不能取1.23、(1);(1)(0<x<11);(3)能,【解析】
(1)当△BEF是等边三角形时,求得∠ABE=30°,则可解Rt△ABE,求得BF即BE的长.(1)作EG⊥BF,垂足为点G,则四边形AEGB是矩形,在Rt△EGF中,由勾股定理知,EF1=(BF-BG)1+EG1.即y1=(y-x)1+111.故可求得y与x的关系.(3)当把△ABE沿着直线BE翻折,点A落在点A'处,应有∠BA'F=∠BA'E=∠A=90°,若△A'BF成为等腰三角形,必须使A'B=A'F=AB=11,有FA′=EF-A′E=y-x=11,继而结合(1)得到的y与x的关系式建立方程即可求得AE的值.【详解】(1)当△BEF是等边三角形时,∠EBF=90°,∵四边形ABCD是正方形,∴∠ABC=∠A=90°,∴∠ABE=∠ABC-∠EBC=90°-60°=30°,∴BE=1AE,设AE=x,则BE=1x,在Rt△ABE中,AB1+AE1=BE1,即111+x1=(1x)1,解得x=∴AE=,BE=,∴BF=BE=.(1)作EG⊥BF,垂足为点G,根据题意,得EG=AB=11,FG=y-x,EF=y,0<AE<11,在Rt△EGF中,由勾股定理知,EF1=(BF-BG)1+EG1.∴y1=(y-x)1+111,∴所求的函数解析式为(0<x<11).(3)∵AD∥BC∴∠AEB=∠FBE∵折叠∴∠AEB=∠FEB,∴∠AEB=∠FBE=∠FEB,∴点A′落在EF上,∴A'E=AE,∠BA'F=∠BA'E=∠A=90,∴要使△A'BF成为等腰三角形,必须使A'B=A'F.而A'B=AB=11,A'F=EF-A'E=BF-A'E,∴y-x=11.∴-x=11.整理得x1+14x-144=0,解得,经检验:都原方程的根,但不符合题意,舍去,当AE=时,△A'BF为等腰三角形.【点睛】本题考查了正方形综合题,涉及了等边三角形和正方形、矩形、等腰三角形的性质,勾股定理,解一元二次方程,函数等知识,综合性较强,准确识图,熟练掌握和灵活运用相关知识是解题的关键.24、(1)直线OB的解析式为,;(2)直线BD的解析式为,.【解析】
(1)先利用待定系数法求直线OB的解析式,再利用两点间的距离公式计算出OB,然后根据折叠的性质得到BE=BC=6,从而可计算出OE=OB-BE=4;
(2)设D(0,t),则OD=t,CD=8-t,根据折叠的性质得到DE=DC=8-t,∠DEB=∠DCB=90°,根据勾股定理得(8-t)2+42=t2,求出t得到D(0,5),于是可利用待定系数法求出直线BD的解析式;设E(x,),利用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 4.3海-气相互作用课件高中地理人教版(2019)选择性必修一
- 中班主题活动教案:最奇妙的蛋
- 一年级上册数学教案-6和7的组成1 人教新课标
- 教育教学工作应坚持的十个教育理念
- 急性肠道传染病应急演练
- 第一单元《机械运动》7.与速度相关的计算(双基过关)(解析版)
- 第六单元《质量与密度》4.密度的应用(分层训练)(解析版)
- 职业操守及职业规划
- 白内障手术配合
- 咯血护理新进展
- 关于开发建设项目水土保持咨询服务费用计列的指导意见(保监[2005]22号)
- 人机工程评价标准
- 北医三院洁净实验室施工组织设计
- 储气罐日常检查维护保养记录表
- 初中化学课堂教学评价量化表
- 小学五年级上册美术课件第9课小书签赣美版(16张)ppt课件
- 递等式计算(四年级上)
- 中级按摩师培训课件
- 钢丝绳、吊索具检查表(共3页)
- 文秘专业教学标准
- (校内自编)春季高考班(月考)语文古诗文专题
评论
0/150
提交评论