荆门市重点中学2024年数学八年级下册期末检测模拟试题含解析_第1页
荆门市重点中学2024年数学八年级下册期末检测模拟试题含解析_第2页
荆门市重点中学2024年数学八年级下册期末检测模拟试题含解析_第3页
荆门市重点中学2024年数学八年级下册期末检测模拟试题含解析_第4页
荆门市重点中学2024年数学八年级下册期末检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

荆门市重点中学2024年数学八年级下册期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.已知a>b,且a≠0,b≠0,a+b≠0,则函数y=ax+b与在同一坐标系中的图象不可能是()A. B.C. D.2.一直尺与一个锐角为角的三角板如图摆放,若,则的度数为()A. B. C. D.3.如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为()A.(,) B.(,) C.(,) D.(,4)4.直线y=﹣2x+5与x轴、y轴的交点坐标分别是()A.(,0),(0,5) B.(﹣,0),(0,5) C.(,0),(0,﹣5) D.(﹣,0),(0,﹣5)5.下列各组数中是勾股数的为()A.1、2、3 B.4、5、6 C.3、4、5 D.7、8、96.矩形的长为x,宽为y,面积为8,则y与x之间的函数关系用图象表示大致为()A. B.C. D.7.已知一组数据共有个数,前面个数的平均数是,后面个数的平均数是,则这个数的平均数是()A. B. C. D.8.下列运算正确的是()A.= B.=a+1 C.+=0 D.﹣=9.要使代数式有意义,则x的取值范围是()A.x≠2 B.x≥2 C.x>2 D.x≤210.在平行四边形中,对角线、相交于点,若,则=()A. B. C. D.二、填空题(每小题3分,共24分)11.正n边形的一个外角的度数为60°,则n的值为.12.与最简二次根式5是同类二次根式,则a=_____.13.如图,平行四边形ABCD中,点E为BC边上一点,AE和BD交于点F,已知△ABF的面积等于6,△BEF的面积等于4,则四边形CDFE的面积等于___________14.若直线y=kx+b中,k<0,b>0,则直线不经过第_____象限.15.如图,已知一次函数的图象为直线,则关于x的方程的解______.16.等腰三角形的两条中位线分别为3和5,则等腰三角形的周长为_____.17.某汽车在某一直线道路上行驶,该车离出发地的距离S(千米)和行驶时间t(小时)之间的函数关系如图所示(折线ABCDE).根据图中提供的信息,给出下列四种说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在行驶过程中的平均速度为千米/小时;④汽车自出发后3小时至4.5小时之间行驶的速度不变.其中说法正确的序号分别是_____(请写出所有的).18.如图,M是▭ABCD的AB的中点,CM交BD于E,则图中阴影部分的面积与▱ABCD的面积之比为_____.三、解答题(共66分)19.(10分)如图,在▱ABCD中,点E是BC边的中点,连接AE并延长与DC的延长线交于F.(1)求证:CF=CD;(2)若AF平分∠BAD,连接DE,试判断DE与AF的位置关系,并说明理由.20.(6分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.21.(6分)一次函数的图象经过和两点.(1)求一次函数的解析式.(2)当时,求的值.22.(8分)已知矩形中,两条对角线的交点为.(1)如图1,若点是上的一个动点,过点作于点,于点,于点,试证明:;(2)如图②,若点在的延长线上,其它条件和(1)相同,则三者之间具有怎样的数量关系,请写出你的结论并证明.23.(8分)某中学举办“网络安全知识答题竞赛”,七、八年级根据初赛成绩各选出5名选手组成代表队参加决赛,两个队各选出的5名选手的决赛成绩如图所示.平均分(分)中位数(分)众数(分)方差(分2)七年级a85bS七年级2八年级85c100160(1)根据图示填空:a=,b=,c=;(2)结合两队成绩的平均数和中位数进行分析,哪个代表队的决赛成绩较好?(3)计算七年级代表队决赛成绩的方差S七年级2,并判断哪一个代表队选手成绩较为稳定.24.(8分)在平面直角坐标系中,已知直线与轴交于点,与轴交于点,点为的中点,点是线段上的动点,四边形是平行四边形,连接.设点横坐标为.(1)填空:①当________时,是矩形;②当________时,是菱形;(2)当的面积为时,求点的坐标.25.(10分)如图,直线与直线相交于点.(1)求,的值;(2)根据图像直接写出时的取值范围;(3)垂直于轴的直线与直线,分别交于点,,若线段长为2,求的值.26.(10分)如图,在直角梯形ABCD中,AB∥DC,∠B=90°,AB=16,BC=12,CD=1.动点M从点C出发,沿射线CD方向以每秒2个单位长的速度运动;动点N从B出发,在线段BA上,以每秒1个单位长的速度向点A运动,点M、N分别从C、B同时出发,当点N运动到点A时,点M随之停止运动.设运动时间为t(秒).(1)设△AMN的面积为S,求S与t之间的函数关系式,并确定t的取值范围;(2)当t为何值时,以A、M、N三点为顶点的三角形是等腰三角形?

参考答案一、选择题(每小题3分,共30分)1、B【解析】试题分析:根据两函数图象所过的象限进行逐一分析,再进行选择即可.解:A、由函数y=ax+b过一、三、四象限可知,a>0,b<0;由函数的图象可知,a+b>0,与已知a>b,且a≠0,b≠0,a+b≠0,相吻合,故可能成立;B、由函数y=ax+b过二、三、四象限可知,a<0,b<0;由函数的图象可知,a+b>0,两结论相矛盾,故不可能成立;C、由函数y=ax+b过一、三、四象限可知,a>0,b<0;由函数的图象可知,a+b<0,与已知a>b,且a≠0,b≠0,a+b≠0,相吻合,故可能成立;D、由函数y=ax+b过一、三、四象限可知,a<0,b<0;由函数的图象可知,a+b<0,与已知a>b,且a≠0,b≠0,a+b≠0,相吻合,故可能成立;故选B.考点:反比例函数的图象;一次函数的图象.点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.2、C【解析】

由直尺为矩形,有两组对边分别平行,则可求∠4的度数,再由三角形内角和定理可以求∠EAD,而∠2与∠EAD为对顶角,则可以求∠2=∠EAD.【详解】如图,∵直尺为矩形,两组对边分别平行∴∠1+∠4=180°∴∠4=180°∠1=180°-115°=65°∵∠EDA=∠4∴在△EAD中,∠EAD=180°-∠E-∠EDA∵∠E=30°∴∠EAD=180°-∠E-∠EDA=180°-30°-65°=85°∵∠2=∠EAD∴∠2=85°故选C.【点睛】此题主要考查平行线的性质,遇到三角板的题型,要注意在题中有隐藏着已知的度数.3、C【解析】

利用等面积法求O'的纵坐标,再利用勾股定理或三角函数求其横坐标.【详解】解:过O′作O′F⊥x轴于点F,过A作AE⊥x轴于点E,∵A的坐标为(1,),∴AE=,OE=1.由等腰三角形底边上的三线合一得OB=1OE=4,在Rt△ABE中,由勾股定理可求AB=3,则A′B=3,由旋转前后三角形面积相等得,即,∴O′F=.在Rt△O′FB中,由勾股定理可求BF=,∴OF=.∴O′的坐标为().故选C.【点睛】本题考查坐标与图形的旋转变化;勾股定理;等腰三角形的性质;三角形面积公式.4、A【解析】

分别根据点在坐标轴上坐标的特点求出对应的、的值,即可求出直线与轴、轴的交点坐标.【详解】令,则,解得,故此直线与轴的交点的坐标为;令,则,故此直线与轴的交点的坐标为.故选:.【点睛】本题考查的是坐标轴上点的坐标特点,一次函数(,、是常数)的图象是一条直线,它与轴的交点坐标是;与轴的交点坐标是.5、C【解析】

根据勾股定理的逆定理分别对各组数据进行检验即可.【详解】解:A.∵12+22=5≠32=9,∴不是勾股数,故A错误;B.∵42+52=41≠62=36,∴不是勾股数,故B错误;C.∵32+42=25=52=25,∴是勾股数,故C正确;D.∵72+82=113≠92=81,∴不是勾股数,故D错误.故选C.【点睛】本题比较简单,只要对各组数据进行检验,看各组数据是否符合勾股定理的逆定理即可.6、C【解析】

根据矩形面积计算公式即可解答.【详解】解:由矩形的面积8=xy,可知它的长y与宽x之间的函数关系式为y=(x>0),是反比例函数图象,且其图象在第一象限.故选:C.【点睛】本题考查矩形的面积计算公式,注意x,y的取值范围是解题关键.7、C【解析】

由题意可以求出前14个数的和,后6个数的和,进而得到20个数的总和,从而求出20个数的平均数.【详解】解:由题意得:(10×14+15×6)÷20=11.5,故选:C.【点睛】此题考查平均数的意义和求法,求出这些数的总和,再除以总个数即可..8、C【解析】

根据分式的性质进行判断,去掉带有负号的括号,每一项都应变号;分子与分母同除以一个不为0的数,分式的值不变.【详解】A.=,故错误;B.=a+,故错误;C.+=-=0,故正确;D.﹣=,故错误;故选C【点睛】本题考查了分式的加减法则以及分式的基本性质,正确理解分式的基本性质是关键.9、B【解析】

二次根式的被开方数x-2是非负数.【详解】解:根据题意,得

x-2≥0,

解得,x≥2;

故选:B.【点睛】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.10、D【解析】

根据平行四边形的性质即可得到结论.【详解】解:∵四边形ABCD是平行四边形,

∴S△AOB=S四边形ABCD=×24=6,

故选:D.【点睛】本题考查了平行四边形的性质,熟练掌握平行四边形的性质是解题的关键.二、填空题(每小题3分,共24分)11、1【解析】

解:∵正n边形的一个外角的度数为10°,∴n=310÷10=1.故答案为:1.12、1【解析】分析:先将化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于a的方程,解出即可.详解:∵与最简二次根式5是同类二次根式,且=1,∴a+1=3,解得:a=1.故答案为1.点睛:本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.13、1【解析】

利用三角形面积公式得到AF:FE=3:2,再根据平行四边形的性质得到AD∥BE,S△ABD=S△CBD,则可判断△AFD∽△EFB,利用相似的性质可计算出S△AFD=9,所以S△ABD=S△CBD=15,然后用△BCD的面积减去△BEF的面积得到四边形CDFE的面积.【详解】解:∵△ABF的面积等于6,△BEF的面积等于4,即S△ABF:S△BEF=6:4=3:2,∴AF:FE=3:2,∵四边形ABCD为平行四边形,∴AD∥BE,S△ABD=S△CBD,∴△AFD∽△EFB,∴S△AFD∴S△AFD=94×4=9∴S△ABD=S△CBD=6+9=15,∴四边形CDFE的面积=15-4=1.故答案为1.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系;也考查了平行四边形的性质.14、【解析】∵k<0,b>0,∴直线y=kx+b经过第一、二、四象限,故答案为一、二、四.15、1.【解析】

解:根据图象可得,一次函数y=ax+b的图象经过(1,1)点,因此关于x的方程ax+b=1的解x=1.故答案是1.【点睛】本题考查一次函数与一元一次方程,利用数形结合思想解题是关键.16、22或1.【解析】

因为三角形中位线的长度是相对应边长的一半,所以此三角形有一条边为6,一条为10;那么就有两种情况,或腰为10,或腰为6,再分别去求三角形的周长.【详解】解:∵等腰三角形的两条中位线长分别为3和5,∴等腰三角形的两边长为6,10,当腰为6时,则三边长为6,6,10;周长为22;当腰为10时,则三边长为6,10,10;周长为1;故答案为:22或1.【点睛】此题涉及到三角形中位线与其三边的关系,解答此题时要注意分类讨论,不要漏解.17、②④【解析】

根据题意和函数图象中的数据可以判断各个小题是否正确,从而可以解答本题.【详解】解:由图象可知,汽车共行驶了:120×2=240千米,故①错误,汽车在行驶图中停留了2﹣1.5=0.5(小时),故②正确,车在行驶过程中的平均速度为:千米/小时,故③错误,汽车自出发后3小时至4.5小时之间行驶的速度不变,故④正确,故答案为:②④.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.18、1:3【解析】试题解析:设平行四边形的面积为1,∵四边形ABCD是平行四边形,∴又∵M是的AB的中点,则∴上的高线与上的高线比为∴∴S阴影面积则阴影部分的面积与▱ABCD的面积比为.故填空答案:.三、解答题(共66分)19、(1)见解析(2)DE⊥AF【解析】试题分析:(1)根据平行四边形的性质可得到AB∥CD,从而可得到AB∥DF,根据平行线的性质可得到两组角相等,已知点E是BC的中点,从而可根据AAS来判定△BAE≌△CFE,根据全等三角形的对应边相等可证得AB=CF,进而得出CF=CD;(2)利用全等三角形的判定与性质得出AE=EF,再利用角平分线的性质以及等角对等边求出DA=DF,利用等腰三角形的性质求出即可.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∵点F为DC的延长线上的一点,∴AB∥DF,∴∠BAE=∠CFE,∠ECF=∠EBA,∵E为BC中点,∴BE=CE,则在△BAE和△CFE中,,∴△BAE≌△CFE(AAS),∴AB=CF,∴CF=CD;(2)解:DE⊥AF,理由:∵AF平分∠BAD,∴∠BAF=∠DAF,∵∠BAF=∠F,∴∠DAF=∠F,∴DA=DF,又由(1)知△BAE≌△CFE,∴AE=EF,∴DE⊥AF.【点评】此题主要考查学生对平行四边形的性质以及全等三角形的判定与性质,证明线段相等的常用方法是证明三角形全等.20、(1)见解析(2)见解析【解析】

(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.【详解】解:(1)证明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED,AE=DE,∴△AFE≌△DBE(AAS)∴AF=BD.∴AF=DC.(2)四边形ADCF是菱形,证明如下:∵AF∥BC,AF=DC,∴四边形ADCF是平行四边形.∵AC⊥AB,AD是斜边BC的中线,∴AD=DC.∴平行四边形ADCF是菱形21、(1);(2)6.【解析】

(1)利用待定系数法,把点与代入解析式列出方程组即可求得解析式;(2)把x=3代入(1)中得到的解析式即可求得y值.【详解】解:(1)∵一次函数的图象经过点与,∴,解得:,∴一次函数的解析式为.(2)中,当时,.【点睛】本题考查了一次函数,运用待定系数法求一次函数的解析式是必备技能,要熟练掌握.22、(1)证明见解析;(2),证明见解析【解析】

(1)过作于点,根据矩形的判定和性质、全等三角形的判定和性质进行推导即可得证结论;(2)先猜想结论为,过作于点,根据矩形的判定和性质、角平分线的性质进行推导即可得证猜想.【详解】解:证明:(1)过作于点,如图:∵,∴四边形是矩形∴,∴∵四边形是矩形∴,且互相平分∴∴∵,∴∵∴∴∴,即.(2)结论:证明:过作于点,如图:同理可证,∵,∴∴,即.【点睛】本题考查了矩形的判定和性质、全等三角形的判定和性质、角平分线的性质、线段.的和差等知识点,适当添加辅助线是解决问题的关键.23、(1)85,85,80;(2)七年级决赛成绩较好;(3)七年级代表队选手成绩比较稳定.【解析】

(1)根据平均数、中位数、众数的概念分析计算即可;(2)根据图表可知七八年级的平均分相同,因此结合两个年级的中位数来判断即可;(3)根据方差的计算公式来计算即可,然后根据“方差越小就越稳定”的特点来判断哪个队成绩稳定即可.【详解】解:(1)七年级的平均分a=,众数b=85,八年级选手的成绩是:70,75,80,100,100,故中位数c=80;故答案为85,85,80;(2)由表格可知七年级与八年级的平均分相同,七年级的中位数高,故七年级决赛成绩较好;(3)S2七年级=(分2),S2七年级<S2八年级∴七年级代表队选手成绩比较稳定.【点睛】本题主要考查了平均数、中位数、众数、方差的概念及统计意义,熟练掌握其概念是解题的关键.24、(1)4,;(2)(1,)【解析】

(1)根据题意可得OB=6,OA=8,假设是矩形,那么CD⊥BO,结合三角形中位线性质可得CD=,从而即可得出m的值;同样假设是菱形,利用勾股定理求出m即可;(2)利用△EOA面积为9求出点E到OA的距离,从而进一步得出D的纵坐标,最后代入解析式求出横坐标即可.【详解】(1)∵直线与轴交于点,与轴交于点,点为的中点∴OB=6,OA=8,当是矩形时,CD⊥OB,∵C是BO中点,∴此时CD=,∴此时m的值为4;当是菱形时,CD=CO=3,如图,过D作OB垂线,交OB于F,则DF=m,CF=,在Rt△DFC中,,即:,解得:(舍去)或;∴此时m的值为;(2)如图,过E作OA垂线,交OA于N,∵△EOA面积为9,∴,∴,∴DN==,∵

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论