版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省无锡市宜兴市周铁区2024年数学八年级下册期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列y关于x的函数中,是正比例函数的为()A.y=x2 B.y= C.y= D.y=2.如图,在△ABC中,点D、E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是()A.8 B.10 C.12 D.143.一个多边形的每个内角均为108º,则这个多边形是()A.七边形B.六边形C.五边形D.四边形4.某校田径运动会上,参加男子跳高的16名运动员成绩如下表:成绩(m)1.451.501.551.601.651.70人数343231则这些运动员成绩的中位数是()A.1.5 B.1.55 C.1.60 D.1.655.若分式在实数范围内有意义,则实数的取值范围是()A. B. C. D.6.下列函数中,随的增大而减少的函数是()A. B. C. D.7.如图,A、B、C、D四点都在⊙O上,若OCAB,AOC70,则圆周角D的度数等于()A.70 B.50 C.35 D.208.一个不透明的袋子中装有21个红球和若干个白球,这些球除了颜色外都相同,若小英每次从袋子中随机摸出一个球,记下颜色后再放回,经过多次重复试验,小英发现摸到红球的频率逐渐稳定于1.4,则小英估计袋子中白球的个数约为()A.51 B.31 C.12 D.89.若分式的值为0,则x等于()A.﹣l B.﹣1或2 C.﹣1或1 D.110.下列式子正确的是(
)A.若,则x<y B.若bx>by,则x>yC.若,则x=y D.若mx=my,则x=y11.如图,有一块直角三角形纸片,两直角边AB=6,BC=8,将△ABC折叠,使AB落在斜边AC上,折痕为AD,则BD的长为()A.6 B.5 C.4 D.312.如图,AB=AC,BE⊥AC于点E,CF⊥AB于点F,BE,CF交于点D,则下列结论中不正确的是()A.△ABE≌△ACF B.点D在∠BAC的平分线上C.△BDF≌△CDE D.D是BE的中点二、填空题(每题4分,共24分)13.27的立方根为.14.如图,在矩形中,,过矩形的对角线交点作直线分别交、于点,连接,若是等腰三角形,则____.15.如图,已知四边形ABCD是正方形,直线l经过点D,分别过点A和点C作AE⊥l和CF⊥l,垂足分别为E和F,若DE=1,则图中阴影部分的面积为_____.16.分解因式:1﹣x2=.17.如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为____.
18.如图,的顶点在矩形的边上,点与点、不重合,若的面积为4,则图中阴影部分两个三角形的面积和为_____.三、解答题(共78分)19.(8分)某八年级计划用360元购买笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,结果买得的笔记本比打折前多10本。(1)请求出每本笔记本的原来标价;(2)恰逢文具店周年志庆,每本笔记本可以按原价打8折,这样该校最多可购入多少本笔记本?20.(8分)如图,在中,,,点在延长线上,点在上,且,延长交于点,连接、.(1)求证:;(2)若,则__________.21.(8分)已知:如图,□ABCD中,延长BA至点E,使BE=AD,连结CE,求证:CE平分∠BCD.22.(10分)在期末考试来临之际,同学们都进入紧张的复习阶段,为了了解同学们晚上的睡眠情况,现对年级部分同学进行了调查统计,并制成如下两幅不完整的统计图:(其中A代表睡眠时间8小时左右,B代表睡眠时间6小时左右,C代表睡眠时间4小时左右,D代表睡眠时间5小时左右,E代表睡眠时间7小时左右),其中扇形统计图中“E”的圆心角为90°,请你结合统计图所给信息解答下列问题:(1)共抽取了名同学进行调查,同学们的睡眠时间的中位数是小时左右,并将条形统计图补充完整;(2)请你估计年级每个学生的平均睡眠时间约多少小时?23.(10分)已知:D,E分别为△ABC的边AB,AC的中点.求证:DE∥BC,且DE=BC24.(10分)直线是同一平面内的一组平行线.(1)如图1.正方形的4个顶点都在这些平行线上,若四条直线中相邻两条之间的距离都是1,其中点,点分别在直线和上,求正方形的面积;(2)如图2,正方形的4个顶点分别在四条平行线上,若四条直线中相邻两条之间的距离依次为.①求证:;②设正方形的面积为,求证.25.(12分)如图1,已知正方形ABCD的边长为6,E是CD边上一点(不与点C重合),以CE为边在正方形ABCD的右侧作正方形CEFG,连接BF、BD、FD.(1)当点E与点D重合时,△BDF的面积为;当点E为CD的中点时,△BDF的面积为.(2)当E是CD边上任意一点(不与点C重合)时,猜想S△BDF与S正方形ABCD之间的关系,并证明你的猜想;
(3)如图2,设BF与CD相交于点H,若△DFH的面积为,求正方形CEFG的边长.26.如图1,将纸片折叠,折叠后的三个三角形可拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将纸片按图2的方式折叠成一个叠合矩形,则操作形成的折痕分别是线段_______,__________;___________.(2)将纸片按图3的方式折叠成一个叠合矩形,若,,求的长;(3)如图4,四边形纸片满足,,,,,小明把该纸片折叠,得到叠合正方形,请你帮助画出一种叠合正方形的示意图,并求出、的长.
参考答案一、选择题(每题4分,共48分)1、C【解析】试题解析:A、y是x的二次函数,故A选项错误;B、y是x的反比例函数,故B选项错误;C、y是x的正比例函数,故C选项正确;D、y是x的一次函数,故D选项错误;故选C.考点:正比例函数的定义.2、C【解析】
解:∵点D、E分别是边AB,BC的中点,∴DE是三角形BC的中位线,AB=2BD,BC=2BE,∴DE∥BC且又∵AB=2BD,BC=2BE,∴AB+BC+AC=2(BD+BE+DE),即△ABC的周长是△DBE的周长的2倍,∵△DBE的周长是6,∴△ABC的周长是:6×2=12.故选C.3、C【解析】试题分析:因为这个多边形的每个内角都为108°,所以它的每一个外角都为72°,所以它的边数=360÷72=5(边).考点:⒈多边形的内角和;⒉多边形的外角和.4、B【解析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,据此可得.【详解】将这组数据从小到大的顺序排列后,处于中间位置的两个数都是1.55,那么由中位数的定义可知,这组数据的中位数是1.55(米).故选:B【点睛】本题考查中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5、D【解析】
根据分式有意义的条件即可求出答案.【详解】解:由分式有意义的条件可知:,,故选:.【点睛】本题考查分式有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.6、D【解析】
根据一次函数的性质,k<0,y随x的增大而减少,找出各选项中k值小于0的选项即可.【详解】A、B、C选项中的函数解析式k值都是正数,y随x的增大而增大,D选项y=-2x+8中,k=-2<0,y随x的增大而减少.故选D.【点睛】本题考查了一次函数的性质,主要利用了当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.7、C【解析】
由垂径定理将已知角转化,再用圆周角定理求解.【详解】解:因为OC⊥AB,
由垂径定理可知,所以,∠COB=∠COA=70°,根据圆周角定理,得故选:C.【点睛】本题综合考查了垂径定理和圆周角的求法及性质.解答这类题要灵活运用所学知识解答问题,熟练掌握圆的性质是关键.8、B【解析】
设白球个数为个,白球数量袋中球的总数=1-14=1.6,求得【详解】解:设白球个数为个,根据题意得,白球数量袋中球的总数=1-14=1.6,所以,解得故选B【点睛】本题主要考查了用评率估计概率.9、D【解析】
直接利用分式的值为零则分子为零分母不为零进而得出答案.【详解】解:∵分式的值为0,∴|x|﹣1=0,x﹣2≠0,x+1≠0,解得:x=1.故选D.【点睛】此题主要考查了分式有意义的条件,正确把握定义是解题关键.10、C【解析】A选项错误,,若a>0,则x<y;若a<0,则x>y;B选项错误,bx>by,若b>0,则x>y;若b<0,则x<y;C选项正确;D选项错误,当m=0时,x可能不等于y.故选C.点睛:遇到等式或者不等式判断正误,可以采用取特殊值代入的方法.11、D【解析】
设点B落在AC上的E点处,连接DE,如图所示,由三角形ABC为直角三角形,由AB与BC的长,利用勾股定理求出AC的长,设BD=x,由折叠的性质得到ED=BD=x,AE=AB=6,进而表示出CE与CD,在直角三角形DEC中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出BD的长.【详解】解:∵△ABC为直角三角形,AB=6,BC=8,∴根据勾股定理得:,设BD=x,由折叠可知:ED=BD=x,AE=AB=6,可得:CE=AC-AE=10-6=4,CD=BC-BD=8-x,在Rt△CDB'中,根据勾股定理得:(8-x)2=42+x2,解得:x=1,则BD=1.故答案为:1.【点睛】此题考查了勾股定理,利用了方程的思想,熟练掌握勾股定理的解本题的关键.12、D【解析】
根据全等三角形的判定对各个选项进行分析,从而得到答案.做题时,要结合已知条件与三角形全等的判定方法逐个验证.【详解】∵AB=AC,BE⊥AC于E,CF⊥AB于F,∠A=∠A∴△ABE≌△ACF(AAS),正确;∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°∴DF=DE故点D在∠BAC的平分线上,正确;∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°∴△BDF≌△CDE(AAS),正确;D.无法判定,错误;故选D.二、填空题(每题4分,共24分)13、1【解析】找到立方等于27的数即可.解:∵11=27,∴27的立方根是1,故答案为1.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算14、或【解析】
连接AC,由矩形的性质得出∠B=90°,AD=BC=6,OA=OC,AD∥BC,由ASA证明△AOE≌△COF,得出AE=CF,若△AEF是等腰三角形,分三种情讨论:①当AE=AF时,设AE=AF=CF=x,则BF=6-x,在Rt△ABF中,由勾股定理得出方程,解方程即可;②当AF=EF时,作FG⊥AE于G,则AG=AE=BF,设AE=CF=x,则BF=6-x,AG=x,得出方程x=6-x,解方程即可;③当AE=FE时,作EH⊥BC于H,设AE=FE=CF=x,则BF=6-x,CH=DE=6-x,求出FH=CF-CH=2x-6,在Rt△EFH中,由勾股定理得出方程,方程无解;即可得出答案.【详解】解:连接AC,如图1所示:∵四边形ABCD是矩形,∴∠B=90°,AD=BC=6,OA=OC,AD∥BC,∴∠OAE=∠OCF,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴AE=CF,若△AEF是等腰三角形,分三种情讨论:①当AE=AF时,如图1所示:设AE=AF=CF=x,则BF=6-x,在Rt△ABF中,由勾股定理得:12+(6-x)2=x2,解得:x=,即AE=;②当AF=EF时,作FG⊥AE于G,如图2所示:则AG=AE=BF,设AE=CF=x,则BF=6-x,AG=x,所以x=6-x,解得:x=1;③当AE=FE时,作EH⊥BC于H,如图3所示:设AE=FE=CF=x,则BF=6-x,CH=DE=6-x,∴FH=CF-CH=x-(6-x)=2x-6,在Rt△EFH中,由勾股定理得:12+(2x-6)2=x2,整理得:3x2-21x+52=0,∵△=(-21)2-1×3×52<0,∴此方程无解;综上所述:△AEF是等腰三角形,则AE为或1;故答案为:或1.【点睛】本题考查了矩形的性质、全等三角形的判定与性质、勾股定理、解方程、等腰三角形的性质、分类讨论等知识;根据勾股定理得出方程是解决问题的关键,注意分类讨论.15、【解析】
证明△ADE≌△DCF,得到FC=DE=1,阴影部分为△EDC面积可求.【详解】∵四边形ABCD是正方形,∴∠ADC=90°,AD=CD.∵∠EAD+∠ADE=90°,∠CDF+∠ADE=90°,∴∠EAD=∠CDF.又∠AED=∠DFC=90°,∴△ADE≌△DCF(AAS).∴FC=DE=1.∴阴影部分△EDC面积=ED×CF=×1×1=.故答案为.【点睛】本题主要考查了正方形的性质、全等三角形的判定和性质,解决这类问题线段的等量转化要借助全等三角形实现.16、(1+x)(1﹣x).【解析】试题分析:直接应用平方差公式即可:1﹣x2=(1+x)(1﹣x).17、1【解析】
先根据勾股定理求出BC的长,再根据图形翻折变换的性质得出AE=CE,进而求出△ABE的周长.【详解】∵在△ABC中,∠B=90°,AB=3,AC=5,∵△ADE是△CDE翻折而成,
∴AE=CE,
∴AE+BE=BC=4,
∴△ABE的周长=AB+BC=3+4=1.
故答案为:1.【点睛】本题考查的是图形翻折变换的性质,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.18、1【解析】
由平行四边形的性质可得S△ADE=S△ADF=1,由矩形的性质可得阴影部分两个三角形的面积和=S△ADF=1.【详解】解:∵四边形AFDE是平行四边形∴S△ADE=S△ADF=1,四边形是矩形,阴影部分两个三角形的面积和,故答案为1.【点睛】本题考查了矩形的性质,平行四边形的性质,灵活运用这些性质解决问题是本题的关键.三、解答题(共78分)19、(1)4元;(2)112本.【解析】
(1)根据打折后购买的数量比打折前多10本,进而列出方程求出答案;(2)先求出打8折后的标价,再根据数量=总价÷单价,列式计算即可求解.【详解】解:(1)设笔记本打折前售价为元,则打折后售价为元,由题意得:,解得:,经检验,是原方程的根.答:打折前每本笔记本的售价是4元;(2)购入笔记本的数量为:(元).故该校最多可购入112本笔记本.【点睛】此题主要考查了分式方程的应用,正确得出等量关系是解题关键.20、(1)见解析;(2)75°【解析】
(1)证明Rt△ABE≌Rt△CBF,即可得到结论;(2)由Rt△ABE≌Rt△CBF证得BE=BF,∠BEA=∠BFC,求出∠BFE=∠BEF=45°,B、E、G、F四点共圆,根据圆周角定理得到∠BGF=∠BEF=45°即可求出答案.【详解】(1)∵,∴∠CBF=,在Rt△ABE和Rt△CBF中,,∴Rt△ABE≌Rt△CBF,∴BE=BF;(2)∵BE=BF,∠CBF=90°,∴∠BFE=∠BEF=45°,∵Rt△ABE≌Rt△CBF,∴∠BEA=∠BFC,∵∠BEA+∠BAE=90°,∴∠BFC+∠BAE=90°,∴∠AGF=90°,∵∠AEB+∠BEG=180°,∴∠BEG+∠BFG=180°,∵∠AGF+∠FBC=180°,∴B、E、G、F四点共圆,∵BE=BF,∴∠BGF=∠BEF=45°,∵∠GBF=60°,∴∠GFB=180°-∠GBF-∠BGF=75°,故答案为:75°.【点睛】此题考查全等三角形的判定与性质,等腰三角形的性质,四点共圆的判定,三角形的内角和定理,证明四点共圆是解此题的关键.21、见解析【解析】分析:由平行四边形的性质得出AB∥CD,AD=BC,由平行线的性质得出∠E=∠DCE,由已知条件得出BE=BC,由等腰三角形的性质得出∠E=∠BCE,得出∠DCE=∠BCE即可.详解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC,∴∠E=∠DCE,∵BE=AD,∴BE=BC,∴∠E=∠BCE,∴∠DCE=∠BCE,即CE平分∠BCD.点睛:本题考查了平行四边形的性质、等腰三角形的判定与性质、平行线的性质;熟练掌握平行四边形的性质,证出∠E=∠BCE是解决问题的关键.22、(1)20,6;(2)估计年级每个学生的平均睡眠时间约6.3小时【解析】分析:(1)由B的人数和所占百分数求出共抽取的人数;再求出E和A的人数,由中位数的定义求出中位数,再将条形统计图补充完整即可;(2)求出所抽取的20名同学的平均睡眠时间,即可得出结果.详解:(1)共抽取的同学人数=6÷30%=20(人),睡眠时间7小时左右的人数=20×=5(人),睡眠时间8小时左右的人数=20﹣6﹣2﹣3﹣5=4(人),按照睡眠时间从小到大排列,各组人数分别为2,3,6,5,4,睡眠时间分别为4,5,6,7,8,共有20个数据,第10个和第11个数据都是6小时,它们的平均数也是6小时,∴同学们的睡眠时间的中位数是6小时左右;故答案为20,6;将条形统计图补充完整如图所示:(2)∵平均数为(4×8+6×6+2×4+3×5+5×7)=6.3(小时),∴估计年级每个学生的平均睡眠时间约6.3小时.点睛:本题考查了条形统计呼和扇形统计图以及中位数和平均数的知识,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.23、证明见解析【解析】
延长DE至F,使EF=DE,连接CF,通过证明△ADE≌△CFE和证明四边形BCFD是平行四边形即可证明三角形的中位线平行于三角形的第三边并且等于第三边的一半.【详解】证明:延长DE到F,使EF=DE.连接CF.在△ADE和△CFE中,∵AE=CE,∠AED=∠CEF,DE=FE,∴△ADE≌△CFE.∴AD=CF,∠A=∠ECF∴AD∥CF,即BD∥CF.又∵BD=AD=CF,∴四边形DBCF是平行四边形.∴DE∥BC,且DF=BC.∴DE=DF=BC.【点睛】本题考查三角形的中位线定理的证明,解题关键是掌握等三角形的判定和全等三角形的性质以及平行四边形的判定和性质.24、(1)9或5;(2)①见解析,②见解析【解析】
(1)分两种情况:①如图1-1,得出正方形ABCD的边长为2,求出正方形ABCD的面积为9;②如图1-2,过点B作EF⊥l1于E,交l4于F,则EF⊥l4,证明△ABE≌△BCF(AAS),得出AE=BF=2由勾股定理求出AB=,即可得出答案;(2)①过点B作EF⊥l1于E,交l4于F,作DM⊥l4于M,证明△ABE≌△BCF(AAS),得出AE=BF,同理△CDM≌△BCF(AAS),得出△ABE≌△CDM(AAS),得出BE=DM即可;②由①得出AE=BF=h2+h2=h2+h1,得出正方形ABCD的面积S=AB2=AE2+BE2,即可得到答案.【详解】解:(1)①如图,当点分别在上时,面积为:;②如图,当点分别在上时,过点B作EF⊥l1于E,交l4于F,则EF⊥l4,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠ABE+∠CBF=180°-90°=90°,∵∠CBF+∠BCF=90°,∴∠ABE=∠BCF,在△ABE和△BCF中,∴△ABE≌△BCF(AAS),∴AE=BF=2,∴AB=,∴正方形ABCD的面积=AB2=5;综上所述,正方形ABCD的面积为9或5;(2)①证明:过点B作EF⊥l1于E,交l4于F,作DM⊥l4于M,如图所示:则EF⊥l4,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠ABE+∠CBF=180°-90°=90°,∵∠CBF+∠BCF=90°,∴∠ABE=∠BCF,在△ABE和△BCF中,,
∴△ABE≌△BCF(AAS),∴AE=BF,同理△CDM≌△BCF(AAS),∴△ABE≌△CDM(AAS),∴BE=DM,即h1=h2.②解:由①得:AE=BF=h2+h2=h2+h1,∵正方形ABCD的面积:S=AB2=AE2+BE2,∴S=(h2+h1)2+h12=2h12+2h1h2+h3.【点睛】本题考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识;熟练掌握正方形的性质,证明三角形全等是解题的关键.25、(1)1,1;(2)S△BDF=S正方形ABCD,证明见解析;(3)2【解析】
(1)根据三角形的面积公式求解;(2)连接CF,通过证明BD∥CF,可得S△BDF=S△BDC=S正方形ABCD;(3)根据S△BDF=S△BDC可得S△BCH=S△DFH=,由三角形面积公式可求CH,DH的长,再由三角形面积公式求出EF的长即可.【详解】(1)∵当点E与点D重合时,
∴CE=CD=6,
∵四边形ABCD,四边形CEFG是正方形,
∴DF=CE=AD=AB=6,
∴S△BDF
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年建筑工程设计与施工承包合同2篇
- 人教版九年级化学第九单元3溶液的浓度课时1溶质的质量分数溶液的稀释或浓缩分层作业课件
- 怎样做竞聘培训师演讲
- 手车协议书模板
- 酒店员工培训目标
- 税务局建设规划方案
- 租赁停车场合同版
- 《火腿肠的制作》课件
- 竞聘护理重症骨干
- 2024年度赠品设计与采购合同3篇
- 餐饮服务基本技能-餐巾折花(餐饮服务管理课件)
- 2023中考英语真题分类汇编19任务型阅读考点5判断正误(第01期)(全国通用)(原卷版)
- 《中华民族大团结》(初中) 全册教案(共12课)
- 外科实习护士自我鉴定总结范文(二篇)
- 综合与实践(绿色出行)
- 《计算机应用基础》形考任务三学习过程表现
- 北京市地铁2023员工入场安全教育考试题(含答案)
- 基础模块2Unit 8 Green Earth reading课件
- 思想道德与法治(山东师范大学)知到章节答案智慧树2023年
- 饱和蒸汽压力温度对照表(绝对压力)
- 卢彰诚《电子商务综合实践教程》课程标准
评论
0/150
提交评论