2024届安徽省宣城市宣州区裘公学校八年级下册数学期末达标检测试题含解析_第1页
2024届安徽省宣城市宣州区裘公学校八年级下册数学期末达标检测试题含解析_第2页
2024届安徽省宣城市宣州区裘公学校八年级下册数学期末达标检测试题含解析_第3页
2024届安徽省宣城市宣州区裘公学校八年级下册数学期末达标检测试题含解析_第4页
2024届安徽省宣城市宣州区裘公学校八年级下册数学期末达标检测试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省宣城市宣州区裘公学校八年级下册数学期末达标检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,在中,,,点D是AB的中点,则A.4 B.5 C.6 D.82.如图,在长方形ABCD中,DC=5cm,在DC上存在一点E,沿直线AE把△AED折叠,使点D恰好落在BC边上,设此点为F,若△ABF的面积为30cm2,那么折叠△AED的面积为()cm2A.16.9 B.14.4 C.13.5 D.11.83.若某个多边形的内角和是外角和的3倍,则这个多边形的边数为()A.4 B.6 C.8 D.104.正五边形的每个内角度数是(

)A.60°

B.90°

C.108°D.120°5.等腰三角形的两边长分别为2、4,则它的周长为()A.8 B.10 C.8或10 D.以上都不对6.如图,PA、PB分别与⊙O相切于点A、B,若∠P=50°,则∠C的值是()A.50° B.55° C.60° D.65°7.如图,正方形中,,连接交对角线于点,那么()A. B. C. D.8.武汉市光谷实验中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),下列说法错误的是()A.九(1)班的学生人数为40 B.m的值为10C.n的值为20 D.表示“足球”的扇形的圆心角是70°9.如图,点A在函数y=(x>0)的图象上,且OA=4,过点A作AB⊥x轴于点B,则△ABO的周长为()A.2 B.2 C.2+4 D.2+410.将函数y=﹣3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为()A.y=-3x+2B.y=-3x-2C.y=-3(x+2)D.y=-3(x-2)11.某次自然灾害导致某铁路遂道被严重破坏,为抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车,问原计划每天修多少米?某原计划每天修米,所列方程正确的是()A. B.C. D.12.以下列长度的线段为边,能构成直角三角形的是()A.2,3,4 B.4,5,6 C.8,13,5 D.1,,1二、填空题(每题4分,共24分)13.一元二次方程的解为______.14.反比例函数y=的图象同时过A(-2,a)、B(b,-3)两点,则(a-b)2=__.15.如果代数式有意义,那么字母x的取值范围是_____.16.一次函数的图象经过点,且与轴、轴分别交于点、,则的面积等于___________.17.有5张正面分别标有数字-2,0,2,4,6的不透明卡片,它们除数字不同外其余全部相同,先将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为,则使关于的分式方程有正实数解的概率为________.18.在式子中,x的取值范围是__________________.三、解答题(共78分)19.(8分)如图,在△ABC中.AC=BC=5.AB=6.CD是AB边中线.点P从点C出发,以每秒2.5个单位长度的速度沿C-D-C运动.在点P出发的同时,点Q也从点C出发,以每秒2个单位长度的速度沿边CA向点A运动.当一个点停止运动时,另一个点也随之停止,设点P运动的时间为t秒.(1)用含t的代数式表示CP、CQ的长度.(2)用含t的代数式表示△CPQ的面积.(3)当△CPQ与△CAD相似时,直接写出t的取值范围.20.(8分)如图1,以□ABCD的较短边CD为一边作菱形CDEF,使点F落在边AD上,连接BE,交AF于点G.(1)猜想BG与EG的数量关系.并说明理由;(2)延长DE,BA交于点H,其他条件不变,①如图2,若∠ADC=60°,求的值;②如图3,若∠ADC=α(0°<α<90°),直接写出的值.(用含α的三角函数表示)21.(8分)在我市开展的“好书伴我成长”读书活动中,某中学为了解八年级300名学生读书情况,随机调查了八年级50名学生读书的册数.统计数据如下表所示:(1)50个样本数据的平均数是______册、众数是______册,中位数是______册;(2)根据样本数据,估计该校八年级300名学生在本次活动中读书多于2册的人数.22.(10分)如图,为等边三角形,,、相交于点,于点,,.(1)求证:;(2)求的长.23.(10分)如图,平行四边形ABCD中,AB=4cm,BC=6cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①AE为何值时四边形CEDF是矩形?为什么?②AE为何值时四边形CEDF是菱形?为什么?24.(10分)如图,图1中ΔABC是等边三角形,DE是中位线,F是线段BC延长线上一点,且CF=AE,连接BE,EF.图1图2(1)求证:BE=EF;(2)若将DE从中位线的位置向上平移,使点D、E分别在线段AB、AC上(点E与点A不重合),其他条件不变,如图2,则(1)题中的结论是否成立?若成立,请证明;若不成立.请说明理由.25.(12分)如图,在平面直角坐标系中,直线交轴于点,交轴于点,正方形的点在线段上,点,在轴正半轴上,点在点的右侧,.将正方形沿轴正方向平移,得到正方形,当点与点重合时停止运动.设平移的距离为,正方形与重合部分的面积为.(1)求直线的解析式;(2)求点的坐标;(3)求与的解析式,并直接写出自变量的取值范围.26.为了了解初中阶段女生身高情况,从某中学初二年级120名女生中随意抽出40名同龄女生的身高数据,经过分组整理后的频数分布表及频数分布直方图如图所示:结合以上信息,回答问题:(1)a=______,b=______,c=______.(2)请你补全频数分布直方图.(3)试估计该年级女同学中身高在160~165cm的同学约有多少人?

参考答案一、选择题(每题4分,共48分)1、B【解析】

根据直角三角形中,斜边上的中线等于斜边的一半解答即可.【详解】,点D为AB的中点,.故选:B.【点睛】本题考查直角三角形的性质,掌握在直角三角形中斜边上的中线等于斜边的一半是解题的关键.2、A【解析】

根据矩形的性质及三角形的面积公式求得BF=12cm,在Rt△ABF中,由勾股定理可得,AF=13cm;由折叠的性质可得AD=AF,DE=EF,设DE=xcm,则EC=(5-x)cm,EF=xcm,FC=1cm.在Rt△ECF中,由勾股定理可得方程(5-x)2+12=x2,解方程求得x的值,再由三角形的面积公式即可求得△AED的面积.【详解】∵四边形ABCD是矩形,∴∠B=∠C=90°,AB=CD=5cm,BC=AD,∵△ABF的面积为30cm2,∴BF=12cm,在Rt△ABF中,由勾股定理可得,AF=(cm);由折叠的性质可得AD=AF,DE=EF,∴BC=AD=13cm,设DE=xcm,则EC=(5-x)cm,EF=xcm,FC=BC-BF=13-12=1(cm).在Rt△ECF中,由勾股定理可得,(5-x)2+12=x2,解得x=,即DE=cm,∴△AED的面积为:AD×DE=(cm2)故选A.【点睛】本题考查了翻折变换的性质,矩形的性质,三角形的面积,勾股定理,熟记各性质并利用勾股定理列出方程是解题的关键.3、C【解析】

先根据多边形的外角和是360度求出多边形的内角和的度数,再依据多边形的内角和公式即可求解.【详解】解:多边形的内角和是:3×360=1010°.

设多边形的边数是n,则(n-2)•110=1010,

解得:n=1.

即这个多边形的边数是1.

故选:C.【点睛】本题主要考查了多边形的内角和定理以及多边形的外角和定理,注意多边形的外角和不随边数的变化而变化.4、C【解析】

先根据多边形的内角和公式(n-2)•180°求出内角和,然后除以5即可;【详解】根据多边形内角和定理可得:(5-2)•180°=540°,

540°÷5=108°;故选:C.【点睛】考查了正多边形的内角与外角的关系,解题关键熟记、运用求多边形内角和公式(n-2)•180°.5、B【解析】

由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【详解】解:①当2为腰时,2+2=4,不能构成三角形,故此种情况不存在;

②当4为腰时,符合题意,则周长是2+4+4=1.

故选:B.【点睛】本题考查的是等腰三角形的性质和三边关系,解答此题时注意分类讨论,不要漏解.6、D【解析】

连接OA、OB,由已知的PA、PB与圆O分别相切于点A、B,根据切线的性质得到OA⊥AP,OB⊥PB,从而得到∠OAP=∠OBP=90°,然后由已知的∠P的度数,根据四边形的内角和为360°,求出∠AOB的度数,最后根据同弧所对的圆周角等于它所对圆心角度数的一半即可得到∠C的度数.【详解】解:连接OA、OB,

∵PA、PB与圆O分别相切于点A、B,

∴OA⊥AP,OB⊥PB,

∴∠OAP=∠OBP=90°,又∠P=50°,

∴∠AOB=360°-90°-90°-50°=130°,

又∵∠ACB和∠AOB分别是弧AB所对的圆周角和圆心角,

∴∠C=∠AOB=×130°=65°.

故选:D.【点睛】此题考查了切线的性质,以及圆周角定理.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题,同时要求学生掌握同弧所对的圆周角等于所对圆心角的一半.7、D【解析】

根据正方形的性质易证S△DEF∽S△AEB,再根据相似三角形的面积比为相似比的平方即可得解.【详解】解:∵四边形ABCD为正方形,∴∠EDF=∠EBA,∠EFD=∠EAB,AB=DC,∴,∵DC=3DF,∴DF:AB=1:3∴S△DEF:S△AEB=1:9.故选:D.【点睛】本题主要考查相似三角形的判定与性质,正方形的性质,解此题的关键在于熟练掌握其知识点.8、D【解析】分析:由条形统计图和扇形统计图得到喜欢篮球的人数而后所占的百分比,求出人数,根据人数求出m、n,根据表示“足球”的百分比求出扇形的圆心角.详解:由图①和图②可知,喜欢篮球的人数是12人,占30%,12÷30%=40,则九(1)班的学生人数为40,A正确;4÷40=10%,则m的值为10,B正确;1−40%−30%−10%=20%,n的值为20,C正确;360°×20%=72°,D错误,故选:D.点睛:本题主要考查了条形统计图,扇形统计图,解题关键在于理解条形统计图和扇形统计图.9、D【解析】

由点A在反比例函数的图象上,设出点A的坐标,结合勾股定理可以表现出OA2=AB2+OB2,再根据反比例函数图象上点的坐标特征可得出AB•OB的值,根据配方法求出(AB+OB)2,由此即可得出AB+OB的值,结合三角形的周长公式即可得出结论.【详解】解:∵点A在函数y=(x>0)的图象上,

∴设点A的坐标为(n,)(n>0).

在Rt△ABO中,∠ABO=90°,OA=1,

∴OA2=AB2+OB2,

又∵AB•OB=•n=1,

∴(AB+OB)2=AB2+OB2+2AB•OB=12+2×1=21,

∴AB+OB=2,或AB+OB=-2(舍去).

∴C△ABO=AB+OB+OA=2+1.

故答案为2+1.故选D.【点睛】本题考查了反比例函数图象上点的坐标特征、完全平方公式以及三角形的周长,解题的关键是求出AB+OB的值.本题属于基础题,难度不大,解决该题型题目时,巧妙的利用完全平方公式直接求出两直角边之和是关键.10、A【解析】试题分析:直接根据一次函数平移规律,“上加下减”进而得出即可:∵将函数y=﹣3x的图象沿y轴向上平移1个单位长度,∴平移后所得图象对应的函数关系式为:y=﹣3x+1.故选A.考点:一次函数图象与平移变换.11、B【解析】

等量关系为:原计划用的时间-实际用的时间=4,据此列方程即可.【详解】解:原计划修天,实际修了天,

可列得方程,

故选:B.【点睛】本题考查了分式方程的应用,从关键字找到等量关系是解决问题的关键.12、D【解析】

欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、因为22+32≠42,所以不能组成直角三角形;B、因为52+42≠62,所以不能组成直角三角形;C、因为52+82≠132,所以不能组成直角三角形;D、因为12+12=()2,所以能组成直角三角形.故选:D.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.二、填空题(每题4分,共24分)13、【解析】

直接求6的平方根即可.【详解】解:因为6的平方根为,所以答案为:【点睛】本题考查开平方解一元二次方程,理解开方和乘方的互逆运算是解答本题的关键.14、【解析】

先将A(-2,a)、B(b,-3)两点的坐标代入反比例函数的解析式y=,求出a、b的值,再代入(a-b)2,计算即可.【详解】∵反比例函数y=的图象同时过A(−2,a)、B(b,−3)两点,∴a==−1,b==,∴(a−b)2=(−1+)2=.故答案为.【点睛】此题考查反比例函数图象上点的坐标特征,解题关键在于把已知点代入解析式15、x⩾−2且x≠1【解析】

先根据分式及二次根式有意义的条件列出关于x的不等式组,求出x的取值范围即可.【详解】∵代数式有意义,

∴,

解得x⩾−2且x≠1.

故答案为:x⩾−2且x≠1.【点睛】本题考查分式有意义的条件和二次根式有意义的条件,解题的关键是掌握分式有意义的条件和二次根式有意义的条件.16、【解析】∵一次函数y=−2x+m的图象经过点P(−2,3),∴3=4+m,解得m=−1,∴y=−2x−1,∵当x=0时,y=−1,∴与y轴交点B(0,−1),∵当y=0时,x=−,∴与x轴交点A(−,0),∴△AOB的面积:×1×=.故答案为.点睛:首先根据待定系数法求得一次函数的解析式,然后计算出与x轴交点,与y轴交点的坐标,再利用三角形的面积公式计算出面积即可.17、.【解析】

解分式方程,得到解,并让解大于零,然后根据概率公式求解.【详解】解:解分式方程得:且x≠2令>0且不等于2,则符合题意得卡片上的数字有:-2,0,4;∴方程的解为正实数的概率为:,故答案为.【点睛】本题考查了概率公式和分式方程的求解,其关键是确定满足题意卡片上的数字..18、x≥2【解析】分析:根据被开方式是非负数列不等式求解即可.详解:由题意得,x-2≥0,x≥2.故答案为:x≥2.点睛:本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.三、解答题(共78分)19、(1)当0<t≤时,CP=2.5t,CQ=2t;当时,CP=8-2.5t,CQ=2t.(2)当0<t≤时,S△CPQ=•PC•sin∠ACD•CQ=×2.5t××2t=;当时,S△CPQ=•PC•sin∠ACD•CQ=×(8-2.5t)××2t=.(3)0<t≤或s【解析】

(1)分两种情形:当0<t≤时,当<t时,分别求解即可.(2)分两种情形:当0<t≤时,当<t≤时,根据S△CPQ=•PC•sin∠ACD•CQ分别求解即可.(3)分两种情形:当0<t≤,可以证明△QCP∽△DCA,当<t,∠QPC=90°时,△QPC∽△ADC,构建方程求解即可.【详解】解:(1)∵CA=CB,AD=BD=3,∴CD⊥AB,∴∠ADC=90°,∴CD===4,当0<t≤时,CP=2.5t,CQ=2t,当时,CP=8-2.5t,CQ=2t.(2)∵sin∠ACD==,∴当0<t≤时,S△CPQ=•PC•sin∠ACD•CQ=×2.5t××2t=当时,S△CPQ=•PC•sin∠ACD•CQ=×(8-2.5t)××2t=.(3)①当0<t≤时,∵CP=2.5t,CQ=2t,∴=,∵=,∴,∵∠PCQ=∠ACD,∴△QCP∽△DCA,∴0<t≤时,△QCP∽△DCA,②当时,当∠QPC=90°时,△QPC∽△ADC,∴,∴,解得:,综上所述,满足条件的t的值为:0<t≤或s时,△QCP∽△DCA.【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,解直角三角形的应用等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.20、(1),理由见解析;(2);(3).【解析】

(1)BG=EG,根据已知条件易证△BAG≌△EFG,根据全等三角形的对应边相等即可得结论;(2)①方法一:过点G作GM∥BH,交DH于点M,证明ΔGME∽ΔBHE,即可得,再证明是等边三角形,可得,由此可得;方法二:延长,交于点,证明ΔHBM为等边三角形,再证明∽,即可得结论;②如图3,连接EC交DF于O根据三角函数定义得cosα=,则OF=bcosα,DG=a+2bcosα,同理表示AH的长,代入计算即可.【详解】(1),理由如下:∵四边形是平行四边形,∴∥,.∵四边形是菱形,∴∥,.∴∥,.∴.又∵,∴≌.∴.(2)方法1:过点作∥,交于点,∴.∵,∴∽.∴.由(1)结论知.∴.∴.∵四边形为菱形,∴.∵四边形是平行四边形,∴∥.∴.∵∥,∴.∴,即.∴是等边三角形。∴.∴.方法2:延长,交于点,∵四边形为菱形,∴.∵四边形为平形四边形,∴,∥.∴.,即.∴为等边三角形.∴.∵∥,∴,.∴∽,∴.由(1)结论知∴.∴.∵,∴.(3).如图3,连接EC交DF于O,∵四边形CFED是菱形,∴EC⊥AD,FD=2FO,设FG=a,AB=b,则FG=a,EF=ED=CD=b,Rt△EFO中,cosα=,∴OF=bcosα,∴DG=a+2bcosα,过H作HM⊥AD于M,∵∠ADC=∠HAD=∠ADH=α,∴AH=HD,∴AM=AD=(2a+2bcosα)=a+bcosα,Rt△AHM中,cosα=,∴AH=,∴==cosα.【点睛】本题是四边形综合题,其中涉及到菱形的性质,等边三角形、全等三角形、平行四边形的判定与性质,综合性较强,难度适中.利用数形结合及类比思想是解题的关键.21、(1)1,2,1;(1)本次活动中读书多于1册的约有108名.【解析】

(1)根据平均数,众数,中位数的定义解答即可;(1)根据样本的频数估计总体的频数.【详解】解:(1)观察表格.可知这组样本救据的平均数是∴这组样本数据的平均数为1.∵在这组样本数据中.2出现了17次,出现的次数最多,∴这组数据的众数为2.∵将这组样本数据按从小到大的顺序排列.其中处于中间的两个数都是1,∴这组数据的中位数为1.(1)在50名学生中,读书多于1本的学生有I8名.有.∴根据样本数据,可以估计该校八年级200名学生在本次活动中读书多于1册的约有108名.【点睛】本题考查了平均数,众数,中位数的知识,掌握各知识点的概念是解题的关键.22、(1)见解析;(2)7.【解析】

(1)根据等边三角形的三条边都相等可得AB=CA,每一个角都是60°可得,∠BAE=∠ACD=60°,然后利用“边角边”证明△ABE和△CAD全等,根据全等三角形对应边相等证明即可;(2)根据全等三角形对应角相等可得∠CAD=∠ABE,然后求出∠BPQ=60°,再根据直角三角形两锐角互余求出∠PBQ=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半求出BP=2PQ,再根据AD=BE=BP+PE代入数据进行计算即可得解.【详解】(1)证明:为等边三角形,,;在和中,,,;(2),,;,,,,在中,,又,.【点睛】本题考查了等边三角形的性质,全等三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半,熟记性质并求出BP=2PQ是解题的关键.23、(1)见解析;(2)①当AE=4cm时,四边形CEDF是矩形.理由见解析;②当AE=2时,四边形CEDF是菱形,理由见解析.【解析】

(1)先证△GED≌△GFC,推出DE=CF和DE∥CF,再根据平行四边形的判定推出即可;(2)①作AP⊥BC于P,先证明△ABP≌△CDE,然后求出DE的值即可得出答案;②先证明△CDE是等边三角形,然后求出DE的值即可得出答案.【详解】(1)证明:∵四边形ABCD是平行四边形∴AD∥BF,∴∠DEF=∠CFE,∠EDC=∠FCD,∵G是CD的中点,∴GD=GC,∴△GED≌△GFC,∴DE=CF,DE∥CF,∴四边形CEDF是平行四边形,(2)①当AE=4cm时,四边形CEDF是矩形.理由:作AP⊥BC于P,∵四边形CEDF是矩形,∴∠CED=∠APB=90°,∴AP=CE,又∵ABCD是平行四边形,∴AB=CD=4cm,则△ABP≌△CDE(HL),∴BP=DE,∵AB=4cm,∠B=60°,∴BP=AB×cos60°=4×=2(cm),∴BP=DE=2cm,又∵BC=AD=6cm,∴AE=AD-DE=6-2=4(cm);.②当AE=2时,四边形CEDF是菱形.理由:∵平行四边形CEDF是菱形,∴DE=CE,又∵∠CDE=∠B=60°,∴△CDE是等边三角形,∵四边形ABCD是平行四边形,∴AB=CD=4cm,DE=CD=4cm,∵BC=AD=6cm,则AE=AD-DE=6-4=2(cm).【点睛】本题考查了平行四边形的判定和性质,等边三角形的判定和性质,全等三角形的判定和性质以及三角函数应用,注意:有一组对边平行且相等的四边形是平行四边形.24、(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论