版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届包头市重点中学八年级数学第二学期期末教学质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若x≤0,则化简|1﹣x|﹣的结果是()A.1﹣2x B.2x﹣1 C.﹣1 D.12.如图,一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为()A.y=-x+2 B.y=x+2 C.y=x-2 D.y=-x-23.如图,过正方形的顶点作直线,点、到直线的距离分别为和,则的长为()A. B. C. D.4.下列图形既是轴对称图形,又是中心对称图形的是()A. B. C. D.5.甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s2如下表所示:甲乙丙丁平均数(cm)561560561560方差s23.53.515.516.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁6.为考察甲、乙、丙三种小麦的长势,在同一时期分别从中随机抽取部分麦苗,计算后得到苗高(单位:cm)的方差为S甲2=4.1,SA.甲 B.乙 C.丙 D.都一样7.下列各数中比3大比4小的无理数是()A. B. C.3.1 D.8.在平行四边形ABCD中,若∠A=50A.∠B=130∘ B.∠B+∠C=180∘9.若点P(a,2)在第二象限,则a的值可以是()A. B.0 C.1 D.210.如图,在▱ABCD中,连接AC,∠ABC=∠CAD=45°,AB=,则BC的长是()A. B.2 C.2 D.411.下列运算正确的是()A. B. C. D.2mm=2m12.下列图形中既是轴对称图形又是中心对称图形的是()A.等腰三角形 B.平行四边形 C.正五边形 D.正十边形二、填空题(每题4分,共24分)13.如图,,分别平分与,,,则与之间的距离是__________.14.某企业两年前创办时的资金为1000万元,现在已有资金1210万元,设该企业两年内资金的年平均增长率是x,则根据题意可列出方程:______.15.若从一个多边形的一个顶点出发可引5条对角线,则它是______边形.16.当五个整数从小到大排列后,其中位数是4,如果这组数据的唯一众数是6,那么这组数据可能的最大的和是_____________.17.一元二次方程的两根为,,若,则______.18.确定一个的值为________,使一元二次方程无实数根.三、解答题(共78分)19.(8分)如图所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)若AD=5,BD=12,求DE的长.20.(8分)实践与探究宽与长的比是(约0.618)的矩形叫做黄金矩形。黄金矩形给我们以协调、均匀的美感。世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计。下面我们通过折纸得到黄金矩形。第一步,在一张矩形纸片的一端,利用图1的方法折出一个正方形,然后把纸片展平。第二步,如图2,把这个正方形折成两个相等的矩形,再把纸片展平,折痕是。第三步,折出内侧矩形的对角线,并把折到图3中所示的处,折痕为。第四步,展平纸片,按照所得的点折出,使;过点折出折痕,使。(1)上述第三步将折到处后,得到一个四边形,请判断四边形的形状,并说明理由。(2)上述第四步折出折痕后得到一个四边形,这个四边形是黄金矩形,请你说明理由。(提示:设的长度为2)(3)在图4中,再找出一个黄金矩形_______________________________(黄金矩形除外,直接写出答案,不需证明,可能参考数值:)(4)请你举一个采用了黄金矩形设计的世界名建筑_________________________.21.(8分)如图,AD=CB,AB=CD,求证:△ACB≌△CAD22.(10分)如图,在平面直角坐标系中,是原点,的顶点、的坐标分别为、,反比例函数的图像经过点.(1)求点的坐标;(2)求的值.(3)将沿轴翻折,点落在点处.判断点是否落在反比例函数的图像上,请通过计算说明理由.23.(10分)解方程:x(x﹣3)=1.24.(10分)学校准备购买纪念笔和记事本奖励同学,纪念笔的单价比记事本的单价多4元,且用30元买记事本的数量与用50元买纪念笔的数量相同.求纪念笔和记事本的单价.25.(12分)(1)解方程:x2x-3+53-2x(2)解不等式组并把解集表示在数轴上:3x-1226.某小区积极创建环保示范社区,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,已知温馨提示牌的单价为每个30元,垃圾箱的单价为每个90元,共需购买温馨提示牌和垃圾箱共100个.(1)若规定温馨提示牌和垃圾箱的个数之比为1:4,求所需的购买费用;(2)若该小区至多安放48个温馨提示牌,且费用不超过6300元,请列举所有购买方案,并说明理由.
参考答案一、选择题(每题4分,共48分)1、D【解析】试题分析:根据x≤0,可知-x≥0,因此可知1-x≥0,然后根据可求解为|1﹣x|﹣=1-x+x=1.故选:D2、B【解析】
解:设一次函数的解析式y=kx+b(k≠0),∵一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,∴在直线y=-x中,令x=-1,解得:y=1,则B的坐标是(-1,1).把A(0,1),B(-1,1)的坐标代入一次函数的解析式y=kx+b得:,解得,该一次函数的表达式为y=x+1.故选B.3、A【解析】
先证明△ABE≌△BCF,得到BE=CF=1,在Rt△ABE中利用勾股定理可得AB=2,由此可得AC长.【详解】解:∵四边形ABCD是正方形,
∴AB=AC,∠ABC=90°.
∵∠ABE+∠EAB=90°,∠ABE+∠CBF=90°,
∴∠EAB=∠CBF.
又∠AEB=∠CFB=90°,
∴△ABE≌BCF(AAS).
∴BE=CF=1.
在Rt△ABE中,利用勾股定理可得AB===2.
则AC=AB=2.
故选A.【点睛】本题主要考查了正方形的性质、全等三角形的判定和性质,以及勾股定理,解题的关键是通过全等转化线段使其划归于一直角三角形中,再利用勾股定理进行求解.4、D【解析】
直接利用轴对称图形和中心对称图形的概念求解.【详解】解:A、是轴对称图形,但不是中心对称图形,故此选项错误;
B、是轴对称图形,不是中心对称图形,故此选项错误;
C、是轴对称图形,不是中心对称图形,故此选项错误;
D、既是中心对称图形也是轴对称图形,故此选项正确.
故选:D.【点睛】此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.5、A【解析】试题分析:根据方差和平均数的意义找出平均数大且方差小的运动员即可.解:∵甲的方差是3.5,乙的方差是3.5,丙的方差是15.5,丁的方差是16.5,∴S甲2=S乙2<S丙2<S丁2,∴发挥稳定的运动员应从甲和乙中选拔,∵甲的平均数是561,乙的平均数是560,∴成绩好的应是甲,∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择甲;故选A.【点评】本题考查了方差和平均数.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6、B【解析】
根据方差的定义,方差越小数据越稳定.由此即可解答.【详解】∵S甲2=4.1,S∴S丙2>S甲2>S乙2,方差最小的为乙,∴麦苗高度最整齐的是乙.故选B.【点睛】本题考查了方差的应用,方差是用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)的统计量.在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.7、A【解析】
由于带根号的要开不尽方是无理数,无限不循环小数为无理数,根据无理数的定义即可求解.【详解】∵四个选项中是无理数的只有和,而>4,3<<4,∴选项中比3大比4小的无理数只有.故选:A.【点睛】此题主要考查了无理数的定义,解题时注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.8、D【解析】
由于平行四边形中相邻内角互补,对角相等,而∠A和∠C是对角可以求出∠C,∠D和∠B与∠A是邻角故可求出∠D和∠B,由此可以分别求出它们的度数,然后可以判断了.【详解】∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,∠A+∠B=180°而∠A=50°,∴∠C=∠A=50°,∠B=∠D=130°,∴D选项错误,故选D.【点睛】本题考查平行四边形的性质,平行四边形的对角相等,邻角互补;熟练运用这个性质求出其它三个角是解决本题的关键.9、A【解析】
根据第二象限内点的横坐标是负数判断.【详解】解:∵点P(a,1)在第二象限,∴a<0,∴-1、0、1、1四个数中,a的值可以是-1.故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10、B【解析】
根据平行四边形的性质可得出CD=AB=、∠D=∠CAD=45°,由等角对等边可得出AC=CD=,再利用勾股定理即可求出BC的长度.【详解】∵四边形ABCD是平行四边形,∴CD=AB=,BC=AD,∠D=∠ABC=∠CAD=45°,∴AC=CD=,∠ACD=90°,即△ACD是等腰直角三角形,∴BC=AD==1.故选:B.【点睛】本题考查了平行四边形的性质、等腰三角形的性质以及勾股定理,根据平行四边形的性质结合∠ABC=∠CAD=45°,找出△ACD是等腰直角三角形是解题的关键.11、C【解析】A.,错误;B.,错误;C.,正确;D.,错误.故选C.12、D【解析】
根据轴对称图形和中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形.故错误;
B、不是轴对称图形,是中心对称图形.故错误;
C、是轴对称图形,不是中心对称图形.故错误;
D、是轴对称图形,也是中心对称图形.故正确.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、填空题(每题4分,共24分)13、1【解析】
过点G作GF⊥BC于F,交AD于E,根据角平分线的性质得到GF=GH=5,GE=GH=5,计算即可.【详解】解:过点G作GF⊥BC于F,交AD于E,
∵AD∥BC,GF⊥BC,
∴GE⊥AD,
∵AG是∠BAD的平分线,GE⊥AD,GH⊥AB,
∴GE=GH=4,
∵BG是∠ABC的平分线,FG⊥BC,GH⊥AB,
∴GF=GE=4,
∴EF=GF+GE=1,
故答案为:1.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.14、.【解析】
根据关系式:现在已有资金1000万元×(1+年平均增长率)2=现在已有资金1万元,把相关数值代入即可求解.【详解】设该企业两年内资金的年平均增长率是x,则根据题意可列出方程:1000(1+x)2=1.故答案为:1000(1+x)2=1.【点睛】此题主要考查了由实际问题抽象出一元二次方程,关键是掌握增长率问题的计算公式:变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.15、八..【解析】
可根据n边形从一个顶点引出的对角线与边的关系:n-3,列方程求解.【详解】设多边形有n条边,则n-3=5,解得n=1.故多边形的边数为1,即它是八边形.故答案为:八.【点睛】多边形有n条边,则经过多边形的一个顶点的所有对角线有(n-3)条,经过多边形的一个顶点的所有对角线把多边形分成(n-2)个三角形.16、21.【解析】已知这组数据共5个,且中位数为4,所以第三个数是4;又因这组数据的唯一众数是6,可得6应该是4后面的两个数字,而前两个数字都小于4,且都不相等,所以前两个数字最大的时候是3,2,即可得其和为21,所以这组数据可能的最大的和为21.故答案为:21.点睛:主要考查了根据一组数据的中位数来确定数据的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.17、-7【解析】
先用根与系数的关系,确定m、n的和与积,进一步确定a的值,然后将m代入,得到,最后再对变形即会完成解答.【详解】解:由得:m+n=-5,mn=a,即a=2又m是方程的根,则有,所以+(m+n)=-2-5=-7故答案为-7.【点睛】本题主要考查了一元二次方程的解和多项式的变形,其中根据需要对多项式进行变形是解答本题的关键.18、【解析】
根据方程无实数根求出b的取值范围,再确定b的值即可.【详解】∵一元二次方程x2+2bx+1=0无实数根,∴4b2-4<0∴-1<b<1,因此,b可以取等满足条件的值.【点睛】此题考查了一元二次方程根的判别式的应用.此题难度不大,解题的关键是掌握当△<0时,一元二次方程没有实数根.三、解答题(共78分)19、(1)证明见解析(2)13【解析】
(1)先根据同角的余角相等得到∠ACE=∠BCD,再结合等腰直角三角形的性质即可证得结论;(2)根据全等三角形的性质可得AE=BD,∠EAC=∠B=45°,即可证得△AED是直角三角形,再利用勾股定理即可求出DE的长.【详解】(1)∵△ACB和△ECD都是等腰直角三角形∴AC=BC,EC=DC,∠ACB=∠ECD=90°∵∠ACE=∠DCE-∠DCA,∠BCD=∠ACB-∠DCA∴∠ACE=∠BCD∴△ACE≌△BCD(SAS);(2)∵△ACB和△ECD都是等腰直角三角形∴∠BAC=∠B=45°∵△ACE≌△BCD∴AE=BD=12,∠EAC=∠B=45°∴∠EAD=∠EAC+∠BAC=90°,∴△EAD是直角三角形∴DE=【点睛】解答本题的关键是熟练掌握全等三角形的性质:全等三角形的对应边相等、对应角相等.20、(1)四边形是菱形,见解析;(2)见解析;(3)黄金矩形(或黄金矩形);(4)希腊的巴特农神庙(或巴黎圣母院).【解析】
(1)根据菱形的判定即可求解;(2)根据菱形的性质及折叠得到,即可证明;(3)【详解】(1)解:四边形是菱形,理由如下:由矩形纸片可得,∴,由折叠可得,∴,∴,又由折叠可得,∴,∴四边形是菱形;(2)证明:设的长度为2,由正方形可得,,∴,∵,∴,∴,∴四边形是矩形,∵,由折叠可得,,在中,根据勾股定理,,由折叠可得,∴,∴,∴矩形是黄金矩形;(3)黄金矩形理由:AG=AD+DG=AB+DG=AH=2,∴∴四边形AGEH为黄金矩形(4)希腊的巴特农神庙(或巴黎圣母院)【点睛】此题主要考查矩形的性质与判定,解题的关键是熟知特殊平行四边形的判定与性质.21、见解析【解析】
利用SSS即可证明.【详解】证明:在△ACB与△CAD中∴△ACB≌△CAD(SSS)【点睛】本题考查的是全等三角形的判定,能够根据SSS证明三角形全等是解题的关键.22、(1);(2);(3)点不落在反比例函数图像上.【解析】
(1)根据平行四边形的性质,可得的坐标;(2)已知的坐标,可得的值;(3)根据图形全等和对称,可得坐标,代入反比例函数,可判断是否在图像上.【详解】解:(1)∵平行四边形,∴,∵的坐标为,∴,∵的坐标为,∴点的坐标为;(2)把的坐标代入函数解析式得:,∴.(3)点不落在反比例函数图像上;理由:根据题意得:的坐标为,当时,,∴点不落在反比例函数图像上.【点睛】本题综合考查平行四边形性质、反比例函数、图形翻折、全等等知识.23、x2=2,x2=﹣2【解析】
把方程化成一般形式,用十字相乘法因式分解求出方程的根.【详解】解:x2﹣3x﹣2=0(x﹣2)(x+2)=0x﹣2=0或x+2=0∴x2=2,x2=﹣2.【点睛】本题考查了一元二次方程的解法,根据题目特点,可以灵活选择合适的方法进行解答,使计算变得简单.24、纪念笔和记事本的单价分别为1元,6元.【解析】
首先设纪念笔单价为x元,则记事本单价为(x-4)元,根据题意可得等量关系:30元买记事本的数量与用50元买
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 开放式基金交易服务合同
- 2024简单销售代理合同样本
- 合同范本:委托招商引资协议书
- 二手车购车合同协议样本
- 2024照明购销合同
- 企业与高校就业实习协议书参考
- 代理公司注册登记协议书
- 培训机构老师合作协议示例
- 正规版房屋租赁合同协议范本
- 全面聘用合同范本汇编
- 垃圾填埋场工艺流程
- 人教版新起点一年级下册英语-Unit 3 Lesson 3教案
- 思想道德与法治全册教案
- T∕CECA-G 0074-2020 T∕CAAMTB 23-2020 质量分级及“领跑者”评价要求 纯电动汽车 (含2022年第1号修改单)
- 中文报告boc it operations isae3402report中文版v1.0.zw dh
- 家具生产企业安全生产标准化规范
- 2022年河北唐山中考语文试题及答案
- 端正恋爱动机正确对待失恋《大学生恋爱心理健康辅导》课件
- CMG软件组分模型操作手册
- 南通市化学品生产负面清单与控制对策
- 疗养院建筑设计规范
评论
0/150
提交评论