东莞市重点中学2024年数学八年级下册期末调研试题含解析_第1页
东莞市重点中学2024年数学八年级下册期末调研试题含解析_第2页
东莞市重点中学2024年数学八年级下册期末调研试题含解析_第3页
东莞市重点中学2024年数学八年级下册期末调研试题含解析_第4页
东莞市重点中学2024年数学八年级下册期末调研试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

东莞市重点中学2024年数学八年级下册期末调研试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,在△ABC中,点E,F分别是边BC上两点,ED垂直平分AB,FG垂直平分AC,连接AE,AF,若∠BAC=115°,则∠EAF的大小为()A.45° B.50° C.60° D.65°2.用反证法证明“三角形中至少有一个内角大于或等于”时,应假设()A.三角形的二个内角小于 B.三角形的三个内角都小于C.三角形的二个内角大于 D.三角形的三个内角都大于3.若关于的一元二次方程的一个根是1,则的值为()A.-2 B.1 C.2 D.04.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,若∠DHO=20°,则∠ADC的度数是()A.120° B.130° C.140° D.150°5.下列命题中是真命题的是()A.若a>b,则3﹣a>3﹣bB.如果ab=0,那么a=0,b=0C.一组对边相等,另一组对边平行的四边形是平行四边形D.有两个角为60°的三角形是等边三角形6.下列图形是中心对称图形,但不是轴对称图形的是()A. B. C. D.7.如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A.90°﹣α B.α C.180°﹣α D.2α8.A、B、C分别表示三个村庄,米,米,米,某社区拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P的位置应在()A.AB的中点 B.BC的中点C.AC的中点 D.的平分线与AB的交点9.下列各组数中,以a、b、c为边的三角形不是直角三角形的是()A.a=1、b=2、c= B.a=1.5、b=2、c=3C.a=6、b=8、c=10 D.a=3、b=4、c=510.我省2013年的快递业务量为1.2亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2012年增速位居全国第一.若2015年的快递业务量达到2.5亿件,设2012年与2013年这两年的平均增长率为x,则下列方程正确的是()A.1.2(1+x)=2.5B.1.2(1+2x)=2.5C.1.2(1+x)2=2.5D.1.2(1+x)+1.2(1+x)2=2.5二、填空题(每小题3分,共24分)11.在英文单词believe中,字母“e”出现的频率是_______.12.如图,△ABC,△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,将△ADE绕点A在平面内自由旋转,连接DC,点M,P,N分别为DE,DC,BC的中点,若AD=3,AB=7,则线段MN的取值范围是______.13.如右图,一只蚂蚁沿着边长为2的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,则此最短路径的长为.14.某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为.15.已知边长为的正三角形,两顶点分别在平面直角坐标系的轴、轴的正半轴上滑动,点C在第一象限,连结OC,则OC的长的最大值是.16.若实数x,y满足+(y+)2=0,则yx的值为________.17.已知正方形的对角线为4,则它的边长为_____.18.如图,将绕点旋转一定角度得到,点的对应点恰好落在边上.若,,则________.三、解答题(共66分)19.(10分)如图,出租车是人们出行的一种便利交通工具,折线ABC是在我市乘出租车所付车费y(元)与行车里程x(km)之间的函数关系图象.(1)根据图象,当x≥3时y为x的一次函数,请写出函数关系式;(2)某人乘坐13km,应付多少钱?(3)若某人付车费42元,出租车行驶了多少千米?20.(6分)如图,正方形ABCD中,P为AB边上任意一点,AE⊥DP于E,点F在DP的延长线上,且EF=DE,连接AF、BF,∠BAF的平分线交DF于G,连接GC.(1)求证:△AEG是等腰直角三角形;(2)求证:AG+CG=DG.21.(6分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.22.(8分)解下列方程:23.(8分)先化简,再求值:,其中x=﹣1.24.(8分)如图,四边形ABCD中,,E是边CD的中点,连接BE并延长与AD的延长线相较于点F.(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.25.(10分)如图,在由边长为1的小正方形组成的网格中,的三个顶点均在格点上,请解答:(1)判断的形状,并说明理由;(2)在网格图中画出AD//BC,且AD=BC;(3)连接CD,若E为BC中点,F为AD中点,四边形AECF是什么特殊的四边形?请说明理由.26.(10分)如图,在平行四边形ABCD中,E,F为对角线BD上的两点,且∠DAE=∠BCF.求证:(1)AE=CF;(2)四边形AECF是平行四边形.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

根据三角形内角和定理得到∠B+∠C=65°,根据线段垂直平分线的性质得到EA=EB,FA=FC,根据等腰三角形的性质得到∠EAB=∠B,∠FAC=∠C,结合图形计算即可.【详解】解:∵∠BAC=115°,∴∠B+∠C=180°-115°=65°,∵ED垂直平分AB,FG垂直平分AC,∴EA=EB,FA=FC,∴∠EAB=∠B,∠FAC=∠C,∴∠EAB+∠FAC=∠B+∠C=65°,∴∠EAF=∠BAC-(∠EAB+∠FAC)=50°,故选:B.【点睛】本题考查的是线段的垂直平分线的性质、等腰三角形的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.2、B【解析】

反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断.【详解】反证法证明命题“三角形中至少有一个角大于或等于60°”时,首先应假设这个三角形中每一个内角都小于60°,故选:B.【点睛】本题考查的是反证法的应用,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.3、C【解析】

根据方程的解的定义,把x=1代入方程,即可得到关于a的方程,再求解即可.【详解】解:根据题意得:1-3+a=0

解得:a=1.

故选C.【点睛】本题主要考查了一元二次方程的解的定义,特别需要注意的条件是二次项系数不等于0.4、C【解析】

由四边形ABCD是菱形,可得OB=OD,AC⊥BD,又由DH⊥AB,∠DHO=20°,可求得∠OHB的度数,然后由直角三角形斜边上的中线等于斜边的一半,证得△OBH是等腰三角形,继而求得∠ABD的度数,然后求得∠ADC的度数.【详解】∵四边形ABCD是菱形,∴OB=OD,AC⊥BD,∠ADC=∠ABC,∵DH⊥AB,∴OH=OB=BD,∵∠DHO=20°,∴∠OHB=90°﹣∠DHO=70°,∴∠ABD=∠OHB=70°,∴∠ADC=∠ABC=2∠ABD=140°,故选C.【点睛】本题考查了菱形的性质、直角三角形的性质以及等腰三角形的判定与性质,证得△OBH是等腰三角形是关键.5、D【解析】

分别判断各选项是否正确即可解答.【详解】解:A.若a>b,则3﹣a<3﹣b,故A错误;B.如果ab=0,那么a=0或b=0,故B错误;C.一组对边相等,另一组对边平行的四边形不一定是平行四边形,故C错误;D.有两个角为60°的三角形是等边三角形,故D正确;故选D.【点睛】本题考查了不等式的性质、平行四边形的判定、三角形的判定等知识,熟练掌握是解题的关键.6、C【解析】

根据中心对称图形与轴对称图形的定义即可判断.【详解】A.角是轴对称图形,不是中心对称图形,故错误;B不一定是轴对称图形,不是中心对称图形,故错误;C是中心对称图形,不是轴对称图形,故正确;D是轴对称图形,不是中心对称图形,故错误;故选C.【点睛】此题主要考查中心对称图形与轴对称图形的识别,解题的关键是熟知中心对称图形与轴对称图形的性质.7、C【解析】分析:根据旋转的性质和四边形的内角和是360°,可以求得∠CAD的度数,本题得以解决.详解:由题意可得,∠CBD=α,∠ACB=∠EDB,∵∠EDB+∠ADB=180°,∴∠ADB+∠ACB=180°,∵∠ADB+∠DBC+∠BCA+∠CAD=360°,∠CBD=α,∴∠CAD=180°−α,故选C.点睛:本题考查旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.8、A【解析】

先计算AB2=2890000,BC2=640000,AC2=2250000,可得BC2+AC2=AB2,那么△ABC是直角三角形,而直角三角形斜边上的中线等于斜边的一半,从而可确定P点的位置.【详解】解:如图∵AB2=2890000,BC2=640000,AC2=2250000

∴BC2+AC2=AB2,

∴△ABC是直角三角形,

∴活动中心P应在斜边AB的中点.

故选:A.【点睛】本题考查了勾股定理的逆定理.解题的关键是证明△ABC是直角三角形.9、B【解析】

“如果一个三角形的三条边长分别为a、b、c,且有,那么这个三角形是直角三角形.”【详解】解:A.12+=22;B.1.52+22≠32;C.62+82=102;D.32+42=52.故选B.【点睛】本题考核知识点:勾股定理逆定理.解题关键点:理解勾股定理逆定理的意义.10、C【解析】试题解析:设2015年与2016年这两年的平均增长率为x,由题意得:1.2(1+x)2=2.5,故选C.二、填空题(每小题3分,共24分)11、【解析】

先求出英文单词believe总的字母个数和e的个数,再根据握频率=进行计算即可.【详解】∵英文单词believe共有7个字母,其中有3个e,∴字母“e”出现的频率是;故答案为:.【点睛】此题考查频数与频率,解题关键在于掌握频率的计算公式即可.12、2≤MN≤5【解析】

根据中位线定理和等腰直角三角形的判定证明△PMN是等腰直角三角形,求出MN=BD,然后根据点D在AB上时,BD最小和点D在BA延长线上时,BD最大进行分析解答即可.【详解】∵点P,M分别是CD,DE的中点,∴PM=CE,PM∥CE,∵点P,N分别是DC,BC的中点,∴PN=BD,PN∥BD,∵△ABC,△ADE均为等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS),∴BD=CE,∴PM=PN,∴△PMN是等腰三角形,∵PM∥CE,∴∠DPM=∠DCE,∵PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,∴PM=PN=BD,∴MN=BD,∴点D在AB上时,BD最小,∴BD=AB-AD=4,MN的最小值2;点D在BA延长线上时,BD最大,∴BD=AB+AD=10,MN的最大值为5,∴线段MN的取值范围是2≤MN≤5.故答案为:2≤MN≤5.【点睛】此题考查了旋转的性质,三角形中位线定理,全等三角形的判定和性质,等腰直角三角形的判定和性质等,关键是根据全等三角形的判定和等腰直角三角形的判定证明△PMN是等腰三角形.13、【解析】试题分析:如图,将正方体的三个侧面展开,连结AB,则AB最短,.考点:1.最短距离2.正方体的展开图14、20%.【解析】

解答此题利用的数量关系是:商品原来价格×(1-每次降价的百分率)2=现在价格,设出未知数,列方程解答即可.【详解】设这种商品平均每次降价的百分率为x,根据题意列方程得,125(1−x)2=80,解得x1=0.2=20%,x2=1.8(不合题意,舍去);故答案为20%【点睛】本题考查了一元二次方程的应用,读懂题意列出关系式是解题的关键.15、【解析】

解:如图,取AB的中点D,连接OD、CD,∵正三角形ABC的边长为a,,在△ODC中,OD+CD>OC,∴当O、D、C三点共线时OC最长,最大值为.16、3【解析】

根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.解答【详解】根据题意得:解得:则yx=()=3故答案为:3【点睛】此题考查非负数的性质,掌握运算法则是解题关键17、.【解析】

根据正方形的性质和勾股定理求边长即可.【详解】∵四边形ABCD是正方形,∴AO=DOAC4=2,AO⊥DO,∴△AOD是直角三角形,∴AD.故答案为:2.【点睛】本题考查了勾股定理及正方形性质,属于基础题,比较简单.18、1【解析】

利用含30度的直角三角形三边的关系得到BC=1AB=4,再根据旋转的性质得AD=AB,则可判断△ABD为等边三角形,所以BD=AB=1,然后计算BC-BD即可.【详解】解:∵∠BAC=90°,∠B=60°,

∴BC=1AB=4,

∵Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上,

∴AD=AB,

而∠B=60°,

∴△ABD为等边三角形,

∴BD=AB=1,

∴CD=BC-BD=4-1=1.

故答案为:1.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.三、解答题(共66分)19、(1)当x≥3时,y与x之间的函数关系式是y=x+;(2)乘车13km应付车费21元;(3)出租车行驶了28千米.【解析】试题分析:(1)由于x≥3时,直线过点(3,8)、(8,15),设解析式为设y=kx+b,利用待定系数法即可确定解析式;(2)把x=13代入解析式即可求得;(3)将y=42代入到(1)中所求的解析式,即可求出x.解:(1)当x≥3时,设解析式为设y=kx+b,∵一次函数的图象过B(3,7)、C(8,14),∴,解得,∴当x≥3时,y与x之间的函数关系式是y=x+;(2)当x=13时,y=×13+=21,答:乘车13km应付车费21元;(3)将y=42代入y=x+,得42=x+,解得x=28,即出租车行驶了28千米.20、证明见解析【解析】试题分析:(1)根据线段垂直平分线的定义得到AF=AD,根据等腰三角形的性质、角平分线的定义证明即可;

(2)作CH⊥DP,交DP于H点,证明△ADE≌△DCH(AAS),得到CH=DE,DH=AE=EG,证明CG=GH,AG=DH,计算即可.试题解析:(1)证明:∵DE=EF,AE⊥DP,∴AF=AD,∴∠AFD=∠ADF,∵∠ADF+∠DAE=∠PAE+∠DAE=90°,∴∠AFD=∠PAE,∵AG平分∠BAF,∴∠FAG=∠GAP.∵∠AFD+∠FAE=90°,∴∠AFD+∠PAE+∠FAP=90°∴2∠GAP+2∠PAE=90°,即∠GAE=45°,∴△AGE为等腰直角三角形;(2)证明:作CH⊥DP,交DP于H点,∴∠DHC=90°.∵AE⊥DP,∴∠AED=90°,∴∠AED=∠DHC.∵∠ADE+∠CDH=90°,∠CDH+∠DCH=90°,∴∠ADE=∠DCH.∵在△ADE和△DCH中,,∴△ADE≌△DCH(AAS),∴CH=DE,DH=AE=EG.∴EH+EG=EH+HD,即GH=ED,∴GH=CH.∴CG=GH.∵AG=EG,∴AG=DH,∴CG+AG=GH+HD,∴CG+AG=(GH+HD),即CG+AG=DG.21、(1)见解析;(2)见解析;(3)P(2,0).【解析】

(1)根据网格结构找出点A、B、C平移后的对应点的位置,然后顺次连接即可;(2))找出点A、B、C关于原点O的对称点的位置,然后顺次连接即可;(3)找出A的对称点A′,连接BA′,与x轴交点即为P.【详解】解:(1)根据网格结构找出点A、B、C平移后的对应点的位置,然后顺次连接,如图所示:(2)找出点A、B、C关于原点O的对称点的位置,然后顺次连接,如图所示:(3)找出A的对称点A′,连接BA′,与x轴交点即为P,,由题知,A(1,1),B(4,2),∴A′(1,-1),设A′B的解析式为y=kx+b,把B(4,2),A′(1,-1)代入y=kx+b中,则,解得:,∴y=x-2,当y=0时,x=2,则P点坐标为(2,0).【点睛】本题考查了利用平移变换及原点对称作图及最短路线问题;熟练掌握网格结构准确找出对应点的位置和一次函数知识是解题的关键.22、x1=5,x2=1.【解析】

移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】x2-10x+25=2(x-5),

(x-5)2-2(x-5)=0,

(x-5)(x-5-2)=0,

x-5=0,x-5-2=0,

x1=5,x2=1.【点睛】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.23、【解析】

解:原式=(1+)====把x=-1代入得原式=24、(1)见解析;(2)6或【解析】

(1)根据平行线的性质和中点的性质证明三角形全等,然后根据对角线互相平分的四边形是平行四边形完成证明;(2)由等腰三角形的性质,分三种情况:①BD=BC,②BD=CD,③BC=CD,分别求四边形的面积.【详解】解:(1)证明:∵∠A=∠ABC=90°∴AF∥BC∴∠CBE=∠DFE,∠BCE=∠FDE∵E是边CD的中点∴CE=DE∴△BCE≌△FDE(AAS)∴BE=EF∴四边形BDFC是平行四边形(2)若△BCD是等腰三角形①若BD=BC=3在Rt△ABD中,AB=∴四边形BDFC的面积为S=×3=6;②若BC=DC=3过点C作CG⊥AF于G,则四边形AGCB是矩形,

所以,AG=BC=3,

所以,DG=AG-AD=3-1=2,在Rt△CDG中,由勾股定理得,∴四边形BDFC的面积为S=.③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=2,矛盾,此时不成立;综上所述,四边形BDFC的面积是6或【点睛】本题考查了平行四边形的判定与性质,等腰三角形的性质,全等三角形的判定与性质,(1)确定出全等三角形是解题的关键,(2)难点在于分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论