版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年四川省什邡市师古中学八年级数学第二学期期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.若关于x的方程x2+5x+a=0有一个根为﹣2,则a的值是()A.6 B.﹣6 C.14 D.﹣142.如图,在平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=150°,则∠A的大小为()A.150° B.130° C.120° D.100°3.若(x-3)(x+5)是x2+px+q的因式,则q为()A.-15 B.-2 C.8 D.24.如图,EF为△ABC的中位线,若AB=6,则EF的长为()A.2 B.3 C.4 D.55.矩形的长为x,宽为y,面积为9,则y与x之间的函数关系式用图象表示大致为()A. B. C. D.6.以下说法正确的是()A.在同一年出生的400人中至少有两人的生日相同B.一个游戏的中奖率是1%,买100张奖券,一定会中奖C.一副扑克牌中,随意抽取一张是红桃K,这是必然事件D.一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是37.如图,正方形中,,是的中点,是上的一动点,则的最小值是()A.2 B.4 C. D.8.如图,在矩形ABCD中,AB=2,∠AOD=120°,则对角线AC等于()A.3 B.4 C.5 D.69.如图,在四边形ABCD中,AB=1,则四边形ABCD的周长为()A.1 B.4 C.2 D.210.若为正比例函数,则a的值为()A.4 B. C. D.211.如图,在△ABC中,DE∥BC,若=,则的值为()A. B. C. D.12.已知直线y=(k﹣2)x+k经过第一、二、四象限,则k的取值范围是()A.k≠2 B.k>2 C.0<k<2 D.0≤k<2二、填空题(每题4分,共24分)13.如图,菱形ABCD的边长为2,点E,F分别是边AD,CD上的两个动点,且满足AE+CF=BD=2,设△BEF的面积为S,则S的取值范围是______.14.如果分式有意义,那么的取值范围是____________.15.计算:________________.16.如图,边长为4的菱形ABCD中,∠ABC=30°,P为BC上方一点,且,则PB+PC的最小值为___________.17.某中学随机抽查了50名学生,了解他们一周的课外阅读时间,结果如下表所示:时间(时)4567人数1020155则这50名学生一周的平均课外阅读时间是____小时.18.若A(﹣1,y1)、B(﹣1,y1)在y=1x图象上,则y1、y1大小关系是y1_____y1三、解答题(共78分)19.(8分)先化简,再求值:,其中的值从不等式组的整数解中选取.20.(8分)(1)探索发现:如图1,已知Rt△ABC中,∠ACB=90°,AC=BC,直线l过点C,过点A作AD⊥l,过点B作BE⊥l,垂足分别为D、E.求证:AD=CE,CD=BE.(2)迁移应用:如图2,将一块等腰直角的三角板MON放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O重合,另两个顶点均落在第一象限内,已知点M的坐标为(1,3),求点N的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线y=﹣3x+3与y轴交于点P,与x轴交于点Q,将直线PQ绕P点沿逆时针方向旋转45°后,所得的直线交x轴于点R.求点R的坐标.21.(8分)某市举行“行动起来,对抗雾霾”为主题的植树活动,某街道积极响应,决定对该街道进行绿化改造,共购进甲、乙两种树共50棵,已知甲树每棵800元,乙树每棵1200元.(1)若购买两种树的总金额为56000元,求甲、乙两种树各购买了多少棵?(2)若购买甲树的金额不少于购买乙树的金额,至少应购买甲树多少棵?22.(10分)受益于国家支持新能源汽车发展和“一带一路”倡议,某市汽车零部件生产企业的利润逐年提高,据统计,2017年的利润为2亿元,2019年的利润为2.88亿元.(1)求该企业从2017年到2019年年利润的平均增长率?(2)若年利润的平均增长率不变,则该企业2020年的利润能后超过3.5亿元?23.(10分)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE.已知∠ABC=60°,EF⊥AB,垂足为F,连接DF.(1)证明:△ACB≌△EFB;(2)求证:四边形ADFE是平行四边形.24.(10分)在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.25.(12分)在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连结BE.(感知)如图①,过点A作AF⊥BE交BC于点F.易证△ABF≌△BCE.(不需要证明)(探究)如图②,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.(1)求证:BE=FG.(2)连结CM,若CM=1,则FG的长为.(应用)如图③,取BE的中点M,连结CM.过点C作CG⊥BE交AD于点G,连结EG、MG.若CM=3,则四边形GMCE的面积为.26.已知:P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,E、F分别为垂足.求证:AP=EF.
参考答案一、选择题(每题4分,共48分)1、A【解析】
根据一元二次方程的解的定义,把x=-2代入方程得到关于a的一次方程,然后解此一次方程即可.【详解】解:把x=﹣2代入方程x2+5x+a=0得4﹣5×2+a=0,解得a=1.故选A.【点睛】本题考查了一元二次方程的解,熟练掌握“有根必代原则”是解题的关键.2、C【解析】试题分析:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABE,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AB=AE,∵∠BED=150°,∴∠ABE=∠AEB=30°,∴∠A=180°﹣∠ABE﹣∠AEB=120°.故选C.考点:平行四边形的性质.3、A【解析】
直接利用多项式乘法或十字相乘法得出q的值.【详解】解:∵(x−3)(x+5)是x2+px+q的因式,∴q=−3×5=−1.故选:A.【点睛】此题主要考查了十字相乘法分解因式,正确得出q与因式之间关系是解题关键.4、B【解析】
根据三角形的中位线的性质即可得到结论.【详解】∵EF为△ABC的中位线,若AB=6,∴EF=AB=3,故选B.【点睛】本题考查了三角形的中位线的性质,熟练掌握三角形中位线定理是解题的关键.5、C【解析】由题意得函数关系式为,所以该函数为反比例函数.B、C选项为反比例函数的图象,再依据其自变量的取值范围为x>0确定选项为C.6、A【解析】A.一年有365天或366天,所以400人中一定有两人同一天出现,为必然事件.故正确B.买了100张奖券可能中奖且中奖的可能性很小,故错误C.一副扑克牌中,随意抽取一张是红桃K,这是不确定事件,故错误D.一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是38故选A7、D【解析】
因为A,C关于DB对称,P在DB上,连接AC,EC与DB交点即为P,此时的值最小.【详解】如图,因为A,C关于DB对称,P再DB上,作点连接AC,EC交BD与点P,此时最小.此时=PE+PC=CE,值最小.∵正方形中,,是的中点∴∠ABC=90°,BE=2,BC=4∴CE=故答案为故选D.【点睛】本题考查的是两直线相加最短问题,熟练掌握对称是解题的关键.8、B【解析】
已知矩形ABCD,,所以在直角三角形ABD中,,则得,根据矩形的性质,.【详解】已知矩形ABCD,
,
,
在直角三角形ABD中,
(直角三角形中角所对的直角边等于斜边的一半),
矩形的对角线相等,
.
所以D选项是正确的.【点睛】此题考查的知识点是矩形的性质和角的直角三角形问题,解题的关键是由已知得角的直角三角形及矩形性质求出AC.9、B【解析】
先判定四边形ABCD是平行四边形,再判断是菱形,即可求得答案.【详解】由图可知:AB∥CD,BC∥AD,∴四边形ABCD是平行四边形,∵AB=BC,∴平行四边形ABCD是菱形,∴四边形ABCD的周长=4×1=4,故选B.【点睛】本题考查了菱形的判定和性质,熟记菱形的性质定理是解此题的关键.10、C【解析】
根据正比例函数的定义条件:为常数且,自变量次数为,即可列出有关的方程,求出的值.【详解】根据正比例函数的定义:,解得:,又,得,故.故选:.【点睛】本题主要考查了正比例函数的定义,难度不大,注意基础概念的掌握.11、D【解析】
利用相似三角形的面积比等于相似比的平方解答.【详解】解:∵DE∥BC,∴△ADE∽△ABC,∴,故选:D.【点睛】本题考查了相似三角形的面积比等于相似比的平方这一知识点,熟知这条知识点是解题的关键.12、C【解析】
由一次函数经过的象限确定其图象的增减性,然后确定k的取值范围即可.【详解】∵一次函数y=(k-2)x+k的图象经过第一、二、四象限,
∴k-2<0且k>0;
∴0<k<2,
故选C.【点睛】考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.二、填空题(每题4分,共24分)13、≤S≤.【解析】
先证明△BDE≌△BCF,再求出△BEF为正三角形即可解答.【详解】解:∵菱形ABCD的边长为2,BD=2,∴△ABD和△BCD都为正三角形,∴∠BDE=∠BCF=60°,BD=BC,∵AE+DE=AD=2,而AE+CF=2,∴DE=CF,∴△BDE≌△BCF(SAS);∴∠DBE=∠CBF,BE=BF,∵∠DBC=∠DBF+∠CBF=60°,∴∠DBF+∠DBE=60°即∠EBF=60°,∴△BEF为正三角形;设BE=BF=EF=x,则S=•x•x•sin60°=x2,当BE⊥AD时,x最小=2×sin60°=,∴S最小=×()2=,当BE与AB重合时,x最大=2,∴S最大=×22=,∴≤S≤.故答案为:≤S≤.【点睛】本题考查三角形全等和几何的综合运用,找出表示面积的方法是解题关键.14、【解析】试题分析:分式有意义的条件是分母不为零,故,解得.考点:分式有意义的条件.15、【解析】
二次根式相乘时,根号不变,直接把根号里面的数相乘,最后化简.二次根式相加减时,只有同类的二次根式才能相加减,根号部分不变,把整数部分相加减.【详解】原式=故答案为【点睛】本题考察了二次根式的乘法和减法,这里需要注意的是,无论加减乘除,最后都要化为最简二次根式.16、【解析】
过点A作于点E,根据菱形的性质可推出,过点P作于点F,过点P作直线,作点C关于直线MN的对称点H,连接CH交MN于点G,连接BH交直线MN于点K,连接PH,根据轴对称可得CH=2CG=2,根据两点之间线段最短的性质,PB+PC的最小值为BH的长,根据勾股定理计算即可;【详解】过点A作于点E,如图,∵边长为4的菱形ABCD中,,∴AB=AC=4,∴在中,,∴,∵,∴,过点P作于点F,过点P作直线,作点C关于直线MN的对称点H,连接CH交MN于点G,连接BH交直线MN于点K,连接PH,如图,则,,∴四边形CGPF是矩形,∴CG=PF,∵,∴,∴PF=1,∴CG=PF=1,根据抽对称的性质可得,CG=GH,PH=PC,∴CH=2CG=2,根据两点之间线段最短的性质,得,,即,∴PB+PC的最小值为BH的长,∵,,∴,∴在中,,∴PB+PC的最小值为.故答案为:.【点睛】本题主要考查了菱形的性质,准确分析轴对称的最短路线知识点是解题的关键.17、5.3【解析】(4×10+5×20+6×15+7×5)÷50=5.3(小时).故答案为5.3.18、>【解析】
根据反比例函数的图象和性质,再根据点的横坐标的大小,判断纵坐标的大小.【详解】∵y=1x图象在一、三象限,在每个象限内y随xA(﹣1,y1)、B(﹣1,y1)都在第三象限图象上的两点,∵﹣1<﹣1,∴y1>y1,故答案为:>.【点睛】考查比例函数的图象和性质,当k>0,在每个象限内,y随x的的增大而减小,是解决问题的依据.三、解答题(共78分)19、-2.【解析】试题分析:先算括号里面的,再算除法,解不等式组,求出x的取值范围,选出合适的x的值代入求值即可.试题解析:原式===解得-1≤x<,∴不等式组的整数解为-1,0,1,2若分式有意义,只能取x=2,∴原式=-=-2【点睛】本题考查的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.20、(1)见解析(2)(4,2)(3)(6,0)【解析】
(1)先判断出∠ACB=∠ADC,再判断出∠CAD=∠BCE,进而判断出△ACD≌△CBE,即可得出结论;(2)先判断出MF=NG,OF=MG,进而得出MF=1,OF=3,即可求出FG=MF+MG=1+3=4,即可得出结论;(3)先求出OP=3,由y=0得x=1,进而得出Q(1,0),OQ=1,再判断出PQ=SQ,即可判断出OH=4,SH=0Q=1,进而求出直线PR的解析式,即可得出结论.【详解】证明:∵∠ACB=90°,AD⊥l∴∠ACB=∠ADC∵∠ACE=∠ADC+∠CAD,∠ACE=∠ACB+∠BCE∴∠CAD=∠BCE,∵∠ADC=∠CEB=90°,AC=BC∴△ACD≌△CBE,∴AD=CE,CD=BE,(2)解:如图2,过点M作MF⊥y轴,垂足为F,过点N作NG⊥MF,交FM的延长线于G,由已知得OM=ON,且∠OMN=90°∴由(1)得MF=NG,OF=MG,∵M(1,3)∴MF=1,OF=3∴MG=3,NG=1∴FG=MF+MG=1+3=4,∴OF﹣NG=3﹣1=2,∴点N的坐标为(4,2),(3)如图3,过点Q作QS⊥PQ,交PR于S,过点S作SH⊥x轴于H,对于直线y=﹣3x+3,由x=0得y=3∴P(0,3),∴OP=3由y=0得x=1,∴Q(1,0),OQ=1,∵∠QPR=45°∴∠PSQ=45°=∠QPS∴PQ=SQ∴由(1)得SH=OQ,QH=OP∴OH=OQ+QH=OQ+OP=3+1=4,SH=OQ=1∴S(4,1),设直线PR为y=kx+b,则,解得∴直线PR为y=﹣x+3由y=0得,x=6∴R(6,0).【点睛】本题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形是解本题的关键.21、(1)购买了甲树10棵、乙树40棵;(2)至少应购买甲树30棵.【解析】
(1)首先设甲种树购买了x棵,乙种数购买了y棵,由题意得等量关系:①进甲、乙两种树共50棵;②购买两种树总金额为56000元,根据等量关系列出方程组,再解即可;(2)首先设应购买甲树x棵,则购买乙种树(50﹣a)棵,由题意得不等关系:购买甲树的金额≥购买乙树的金额,再列出不等式,求解即可.【详解】解:(1)设购买了甲树x棵、乙树y棵,根据题意得解得:答:购买了甲树10棵、乙树40棵;(2)设应购买甲树a棵,根据题意得:800a≥1200(50﹣a)解得:a≥30答:至少应购买甲树30棵.【点睛】此题主要考查了二元一次方程组和一元一次不等式的应用,关键是正确理解题意,找出题目中的等量关系和不等关系,列出方程组和不等式.22、(1)这两年该企业年利润平均增长率为20%;(2)该企业2020年的利润不能超过3.5亿元.【解析】
(1)设年利润平均增长率为x,根据“2017年的利润为2亿元,2019年的利润为2.88亿元”,列出关于x的一元二次方程,解之,根据实际情况,即可得到答案,(2)结合(1)的结果,列式计算,求出2020年的利润,即可得到答案.【详解】(1)设年利润平均增长率为x,得:2(1+x)2=2.88,解得
x1
=0.2,x2
=-2.2
(舍去),答:这两年该企业年利润平均增长率为20%;(2)2.88(1+20%)=3.456,3.456<3.5,答:该企业2020年的利润不能超过3.5亿元.【点睛】本题考查了一元二次方程的应用,正确找出等量关系,列出一元二次方程是解题的关键.23、(1)见详解;(2)见详解.【解析】
(1)由△ABE是等边三角形可知:AB=BE,∠EBF=60°,于是可得到∠EFB=∠ACB=90°,∠EBF=∠ABC,接下来依据AAS证明△ABC≌△EBF即可;(2)由△ABC≌△EBF可得到EF=AC,由△ACD是的等边三角形进而可证明AC=AD=EF,然后再证明∠BAD=90°,可证明EF∥AD,故此可得到四边形EFDA为平行四边形.【详解】解:(1)证明:∵△ABE是等边三角形,EF⊥AB,∴∠EBF=60°,AE=BE,∠EFB=90°.又∵∠ACB=90°,∠ABC=60°,∴∠EFB=∠ACB,∠EBF=∠ABC.∵BE=BA,∴△ABC≌△EBF(AAS).(2)证明:∵△ABC≌△EBF,∴EF=AC.∵△ACD是的等边三角形,∴AC=AD=EF,∠CAD=60°,又∵Rt△ABC中,∠ABC=60°,∠BAC=30°,∴∠BAD=∠BAC+∠CAD=90°,∴∠EFA=∠BAD=90°,∴EF∥AD.又∵EF=AD,∴四边形EFDA是平行四边形.【点睛】本题主要考查了平行四边形的判定、全等三角形的性质和判定、等边三角形的性质,解题的关键是掌握证明全等三角形的判定方法和证明平行四边形的判定方法.24、(1)见解析(2)见解析【解析】试题分析:(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.试题分析:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC===5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DA
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 烟台理工学院《物流管理》2022-2023学年第一学期期末试卷
- 烟台理工学院《韩语实践》2022-2023学年第一学期期末试卷
- 宜宾学院《数据结构》2021-2022学年第一学期期末试卷
- 结合传统文化开展教育活动计划
- 徐州工程学院《舞台服装设计》2021-2022学年第一学期期末试卷
- 徐州工程学院《空间形式与组合设计》2021-2022学年第一学期期末试卷
- 培养健康饮食习惯的方案计划
- 木质家具运输合同三篇
- 课堂练习与家庭作业安排计划
- 酒店前台服务培训
- 2024年4月自考00249国际私法答案及评分参考
- 数字经济国际税改“双支柱”方案的历史意义与现实应对专访中国国际税收研究会会长张志勇及国家税务总局国际税务司司长蒙玉英
- (2024年)新版药品管理法培训课件
- 20.第9课第2框课件《维护祖国统一和民族团结》
- 山东省烟台市2023-2024学年高二上学期期末考试数学试卷(含答案)
- 护理查房支气管扩张护理
- 健身与减脂塑型智慧树知到期末考试答案2024年
- (2024年)SA8000标准理解培训教程
- 新汉语水平考试 HSK(四级)试题及答案
- 音乐社会学的主要研究内容
- 从局部到整体:5G系统观-完整版
评论
0/150
提交评论