版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西南宁市2024年八年级数学第二学期期末综合测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.某数学兴趣小组6名成员通过一次数学竞赛进行组内评比,他们的成绩分别是89,92,91,93,96,91,则关于这组数据说法正确的是()A.中位数是92.5 B.平均数是92 C.众数是96 D.方差是52.五一假期小明一家自驾去距家360km的某地游玩,全程的前一部分为高速公路,后一部分为乡村公路.若小汽车在高速公路和乡村公路上分别以某一速度匀速行驶,行驶的路程y(单位:km)与时间x(单位:h)之间的关系如图所示,则下列结论正确的是()A.小汽车在乡村公路上的行驶速度为60km/hB.小汽车在高速公路上的行驶速度为120km/hC.乡村公路总长为90kmD.小明家在出发后5.5h到达目的地3.如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB、AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交于点O2,同样以AB、AO2为两邻边作平行四边形ABC2O2,…,依此类推,则平行四边形ABCnOn的面积为()A. B.5× C.5× D.5×4.八边形的内角和、外角和共多少度()A. B. C. D.5.如图,在中,,垂直平分于点,交于点,则为()A.30° B.25° C.20° D.15°6.如图,菱形ABCD中,AC交BD于点O,于点E,连接OE,若,则()A.20° B.30° C.40° D.50°7.如图,在长方形中,点为中点,将沿翻折至,若,,则与之间的数量关系为()A. B. C. D.8.某课外兴趣小组为了了解所在学校的学生对体育运动的爱好情况,设计了四种不同的抽样调查方案,你认为比较合理的是()A.在校园内随机选择50名学生B.从运动场随机选择50名男生C.从图书馆随机选择50名女生D.从七年级学生中随机选择50名学生9.如图,点A,B分别在函数y=(k1>0)与函数y=(k2<0)的图象上,线段AB的中点M在x轴上,△AOB的面积为4,则k1﹣k2的值为()A.2 B.4 C.6 D.810.如图,在正方形中,点为上一点,与交于点,若,则A.60° B.65° C.70° D.75°11.对于命题“已知:a∥b,b∥c,求证:a∥c”.如果用反证法,应先假设()A.a不平行b B.b不平行c C.a⊥c D.a不平行c12.下列事件中,确定事件是()A.向量与向量是平行向量 B.方程有实数根;C.直线与直线相交 D.一组对边平行,另一组对边相等的四边形是等腰梯形二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中,已知A(﹣2,1),B(1,0),将线段AB绕着点B顺时针旋转90°得到线段BA′,则A′的坐标为_____.14.已知点P(-1,m),Q(-2,n)都在反比例函数的图像上,则m____n(填“>”或“<”或“=”).15.“等边对等角”的逆命题是.16.等腰三角形的两条中位线分别为3和5,则等腰三角形的周长为_____.17.如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C′的坐标为.18.计算:(1+)2×(1﹣)2=_____.三、解答题(共78分)19.(8分)如图,在每个小正方形的边长均为1个单位长度的方格纸中,有一个ABC和一点O,ABC的顶点和点O均与小正方形的顶点重合.(1)在方格纸中,将ABC向下平移5个单位长度得到A1B1C1,请画出A1B1C1;(1)在方格纸中,将ABC绕点O旋转180°得到A1B1C1,请画出A1B1C1.(3)求出四边形BCOC1的面积20.(8分)某公司与销售人员签订了这样的工资合同:工资由两部分组成,一部分是基本工资,每人每月3000元;另一部分是按月销售量确定的奖励工资,每销售一件产品,奖励工资10元.设某销售员销售产品x件,他应得工资记为y元.(1)求y与x的函数关系式.(2)该销售员的工资为4100元,他这个月销售了多少件产品?(3)要使每月工资超过4500元,该月的销售量应当超过多少件?21.(8分)如图,O是平行四边形ABCD对角线AC、BD的交点,E是CD的中点,EF⊥OE交AC延长线于F,若∠ACB=50°,求∠F的度数.22.(10分)学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元。(1)求1只A型节能灯和1只B型节能灯的售价各是多少元?(2)学校准备购进这两种型号的节能灯共80只,并且A型节能灯的数量不多于B型节能灯的3倍,问如何购买最省钱,说明理由。23.(10分)因式分解:(1)m2n﹣2mn+n;(2)x2+3x(x﹣3)﹣924.(10分)如图,BD是▱ABCD的对角线,AE⊥BD于E,CF⊥BD于F,求证:四边形AECF为平行四边形.25.(12分)已知:如图,四边形中,、、、分别为、、和的中点,且.求证:和互相垂直且平分.26.如图,在中,,点、分别是、边上的中点,过点作,交的延长线于点.(1)求证:四边形是平行四边形;(2)若,,求四边形的周长.
参考答案一、选择题(每题4分,共48分)1、B【解析】试题解析:这组数据按照从小到大的顺序排列为:89,91,91,92,93,96,则中位数为:,故A错误;平均数为:,故B正确;众数为:91,故C错误;方差S2==,故D错误.故选A.2、A【解析】
根据一次函数图象的性质和“路程=速度×时间”的关系来分析计算即可.【详解】解:小汽车在乡村公路上的行驶速度为:(270﹣180)÷(3.5﹣2)=60km/h,故选项A正确,小汽车在高速公路上的行驶速度为:180÷2=90km/h,故选项B错误,乡村公路总长为:360﹣180=180km,故选项C错误,小明家在出发后:2+(360﹣180)÷60=5h到达目的地,故选项D错误,故选:A.【点睛】一次函数在实际生活中的应用是本题的考点,根据题意读懂图形及熟练掌握“路程=速度×时间”的关系是解题的关键.3、C【解析】
根据矩形的对角线和平行四边形的对角线都互相平分,所以上下两平行线间的距离相等,平行四边形的面积等于底×高,所以第一个平行四边形是矩形的一半,第二个平行四边形是第一个平行四边形的一半,由此即可解答.【详解】根据矩形的对角线相等且互相平分,可得:平行四边形ABC1O1底边AB上的高为:BC;平行四边形ABC2O2底边AB上的高为:×BC=()2BC;∵S矩形ABCD=AB•BC=5,∴平行四边形ABC1O1的面积为:×5;∴平行四边形ABC2O2的面积为:××5=()2×5;由此可得:平行四边形的面积为()n×5.故选C.【点睛】本题考查了矩形对角线相等且互相平分的性质以及平行四边形的性质,探索并发现规律是解题的关键.4、B【解析】
n边形的内角和是(n−2)•180°,已知多边形的边数,代入多边形的内角和公式就可以求出内角和;任何多边形的外角和是360度,与多边形的边数无关;再把它们相加即可求解.【详解】解:八边形的内角和为(8−2)•180°=1080°;外角和为360°,1080°+360°=1440°.故选:B.【点睛】本题考查了多边形内角与外角,正确记忆理解多边形的内角和定理,以及外角和定理是解决本题的关键.5、D【解析】
连接BD,根据线段垂直平分线的性质可以证明△ABD是等腰三角形,在直角△BCD中根据30°角所对的直角边等于斜边的一半求出∠BDC的度数,然后利用三角形的外角的性质即可求解.【详解】连接BD,∵DE垂直平分AB于E,∴AD=BD=2BC,∴∵∴∠BDC=30°,又∵BD=DA,∴.故选D.【点睛】本题考查了线段的垂直平分线的性质以及等腰三角形的性质,正确求得∠BDC的度数是关键.6、A【解析】
根据直角三角形的斜边中线性质可得OE=OB=OD,根据菱形性质可得∠DBE=∠ABC=70°,从而得到∠OEB度数,再依据∠OED=90°-∠OEB即可.【详解】解:∵四边形ABCD是菱形,∴O为BD中点,∠DBE=∠ABC=70°,∵DE⊥BC,∴在Rt△BDE中,OE=OB=OD,∴∠OEB=∠OBE=70°,∴∠OED=90°-70°=20°,故选A.【点睛】本题主要考查了菱形的性质、直角三角形斜边中线的性质,解决这类问题的方法是四边形转化为三角形.7、D【解析】
直接利用平行线的性质结合翻折变换的性质得出△ADM≌△BCM(SAS),进而利用直角三角形的性质得出答案.【详解】∵M为CD中点,∴DM=CM,在△ADM和△BCM中∵,∴△ADM≌△BCM(SAS),∴∠AMD=∠BMC,AM=BM∴∠MAB=∠MBA∵将点C绕着BM翻折到点E处,∴∠EBM=∠CBM,∠BME=∠BMC=∠AMD∴∠DME=∠AMB∴∠EBM=∠CBM=(90°-β)∴∠MBA=(90°-β)+β=(90°+β)∴∠MAB=∠MBA=(90°+β)∴∠DME=∠AMB=180°-∠MAB-∠MBA=90°-β∵长方形ABCD中,∴CD∥AB∴∠DMA=∠MAB=(90°+β)∴∠DME+∠AME=∠ABE+∠MBE∵∠AME=α,∠ABE=β,∴90°-β+α=β+(90°-β)∴3β-2α=90°故选D.【点睛】本题考查的知识点是平行线的性质,解题关键是利用全等三角形对应角相等即可求解.8、A【解析】
抽样调查中,抽取的样本不能太片面,一定要具有代表性.【详解】解:A、在校园内随机选择50名学生,具有代表性,合理;B、从运动场随机选择50名男生,喜欢运动,具有片面性,不合理;C、从图书馆随机选择50名女生,喜欢读书,具有片面性,不合理;D、从七年级学生中随机选择50名学生,具有片面性,不合理;故选:A.【点睛】本题考查了抽样调查的性质:①全面性;②代表性.9、D【解析】
过点A作AC⊥y轴交于C,过点B作BD⊥y轴交于D,然后根据平行与中点得出OC=OD,设点A(a,d),点B(b,﹣d),代入到反比例函数中有k1=ad,k2=﹣bd,然后利用△AOB的面积为4得出ad+bd=8,即可求出k1﹣k2的值.【详解】过点A作AC⊥y轴交于C,过点B作BD⊥y轴交于D∴AC∥BD∥x轴∵M是AB的中点∴OC=OD设点A(a,d),点B(b,﹣d)代入得:k1=ad,k2=﹣bd∵S△AOB=4∴整理得ad+bd=8∴k1﹣k2=8故选:D.【点睛】本题主要考查反比例函数与几何综合,能够根据△AOB的面积为4得出ad+bd=8是解题的关键.10、C【解析】
先证明△ABE≌△ADE,得到∠ADE=∠ABE=90°﹣25°=65°,在△ADE中利用三角形内角和180°可求∠AED度数.【详解】解:∵四边形ABCD是正方形,∴∠ABC=90°,BA=DA,∠BAE=∠DAE=45°.又AE=AE,∴△ABE≌△ADE(SAS).∴∠ADE=∠ABE=90°﹣25°=65°.∴∠AED=180°﹣45°﹣65°=70°.故选:C.【点睛】本题主要考查了正方形的性质,解决正方形中角的问题一般会涉及对角线平分对角成45°.11、D【解析】
用反证法进行证明;先假设原命题不成立,本题中应该先假设a不平行c,由此即可得答案.【详解】直线a,c的位置关系有平行和不平行两种,因而a∥c的反面是a与c不平行,因此用反证法证明“a∥c”时,应先假设a与c不平行,故选D.【点睛】本题结合直线的位置关系考查反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.12、B【解析】
根据“必然事件和不可能事件统称确定事件”逐一判断即可.【详解】A.向量与向量是平行向量,是随机事件,故该选项错误;B.方程有实数根,是确定事件,故该选项正确;C.直线与直线相交,是随机事件,故该选项错误;D.一组对边平行,另一组对边相等的四边形是等腰梯形,是随机事件,故该选项错误;故选:B.【点睛】本题主要考查确定事件,掌握确定事件和随机事件的区别是解题的关键.二、填空题(每题4分,共24分)13、(2,3)【解析】
作AC⊥x轴于C,作A′C′⊥x轴,垂足分别为C、C′,证明△ABC≌△BA′C′,可得OC′=OB+BC′=1+1=2,A′C′=BC=3,可得结果.【详解】如图,作AC⊥x轴于C,作A′C′⊥x轴,垂足分别为C、C′,∵点A、B的坐标分别为(-2,1)、(1,0),∴AC=2,BC=2+1=3,∵∠ABA′=90°,∴ABC+∠A′BC′=90°,∵∠BAC+∠ABC=90°,∴∠BAC=∠A′BC′,∵BA=BA′,∠ACB=∠BC′A′,∴△ABC≌△BA′C′,∴OC′=OB+BC′=1+1=2,A′C′=BC=3,∴点A′的坐标为(2,3).故答案为(2,3).【点睛】此题考查旋转的性质,三角形全等的判定和性质,点的坐标的确定.解决问题的关键是作辅助线构造全等三角形.14、>【解析】
根据反比例函数的图像特点即可求解.【详解】∵点P(-1,m),Q(-2,n)都在反比例函数的图像上,又-1>-2,反比例函数在x<0时,y随x的增大而增大,∴m>n【点睛】此题主要考查反比例函数的图像,解题的关键是熟知反比例函数的图像特点.15、等角对等边【解析】试题分析:交换命题的题设和结论即可得到该命题的逆命题;解:“等边对等角”的逆命题是等角对等边;故答案为等角对等边.【点评】本题考查了命题与定理的知识,解题的关键是分清原命题的题设和结论.16、22或1.【解析】
因为三角形中位线的长度是相对应边长的一半,所以此三角形有一条边为6,一条为10;那么就有两种情况,或腰为10,或腰为6,再分别去求三角形的周长.【详解】解:∵等腰三角形的两条中位线长分别为3和5,∴等腰三角形的两边长为6,10,当腰为6时,则三边长为6,6,10;周长为22;当腰为10时,则三边长为6,10,10;周长为1;故答案为:22或1.【点睛】此题涉及到三角形中位线与其三边的关系,解答此题时要注意分类讨论,不要漏解.17、(﹣2,2)【解析】试题分析:∵直线y=2x+4与y轴交于B点,∴x=0时,得y=4,∴B(0,4).∵以OB为边在y轴右侧作等边三角形OBC,∴C在线段OB的垂直平分线上,∴C点纵坐标为2.将y=2代入y=2x+4,得2=2x+4,解得x=﹣2.所以C′的坐标为(﹣2,2).考点:2.一次函数图象上点的坐标特征;2.等边三角形的性质;3.坐标与图形变化-平移.18、1【解析】
根据积的乘方法则及平方差公式计算即可.【详解】原式=2.=.=1.故答案为1.【点睛】本题考查积的乘方及平方差公式,熟练掌握并灵活运用是解题关键.三、解答题(共78分)19、(1)见解析;(1)见解析;(3)11.5【解析】
无论是何种变换都需先找出各关键点的对应点,然后顺次连接即可.【详解】解:(1)如图:分别将A,B,C三点向下平移5各单位,得到A1,B1,C1,然后再顺次连接即可。(1)如图:分别将A,B,C三点绕点O旋转180°得到A1,B1,C1,然后再顺次连接即可。(3)四边形BCOC1的面积=△BCC1的面积+△COC1的面积=×5×4+×5×1=11.5【点睛】本题考查了图形的平移和旋转以及图形的面积,其中关键是作出各个关键点的对应点.20、(1)y=10x+3000(x≥0,且x为整数);(2)110件产品;(3)超过150件.【解析】分析:(1).根据营销人员的工资由两部分组成,一部分为基本工资,每人每月3000元;另一部分是按月销售量确定的奖励工资,每销售1件产品奖励10元,得出y与x的函数关系式即可;(2).利用某营销员某月工资为4100元,可求出他销售了多少件产品;(3).根据月工资超过4500元,求不等式解集即可.此题考查了一次函数的综合应用;关键是读懂题意得出y与x之间的函数关系式,进而利用等量关系分别求解;一次函数及其图像是初中代数中比较重要的内容.详解:∵销售人员的工资由两部分组成,一部分为基本工资,每人每月3000元;另一部分是按月销售量确定的奖励工资,每销售1件产品奖励10元,设营销员李亮月销售产品x件,他应得的工资为y元,∴y=10x+3000(,且x为整数);(2)∵若该销售员的工资为4100元,则10x+3000=4100,解之得:x=110,∴该销售员的工资为4100元,他这个月销售了110件产品;(3)根据题意可得:解得,∴要使每月工资超过4500元,该月的销售量应当超过150件.点睛:本题考查了一次函数的性质,熟记性质,会灵活运用性质是解题的关键.21、∠F的度数是40°.【解析】
证出OE是△BCD的中位线,得出OE∥BC,得出∠EOF=∠ACB=50°,由直角三角形的性质即可得出结果.【详解】解:∵四边形ABCD是平行四边形∴OB=OD,即O是BD的中点,∵E是CD的中点,∴OE是△BCD的中位线,∴OE∥BC,∴∠EOF=∠ACB=50°,∵EF⊥OE,∴∠EOF+∠F=90°,∴∠F=90°﹣∠EOF=90°﹣50°=40°;答:∠F的度数是40°.【点睛】本题考查了平行四边形的性质、三角形中位线定理、直角三角形的性质,熟练掌握平行四边形的性质,证明OE是△BCD的中位线是解题的关键.22、(1)1只A型节能灯的售价为5元,1只B型节能灯的售价为7元;(2)购买60只A型节能灯,20只B型节能灯最省钱,理由见解析【解析】
(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价y元,根据题意列出方程组,求出方程组的解即可;(2)设A型节能灯买了a只,则B型节能灯买了(80-a)只,共花费w元,根据题意列出不等式组,求出不等式组的解集即可.【详解】解(1)设1只A型节能灯的售价为x元,1只B型节能灯的售价为y元由题意得:解得:答:1只A型节能灯的售价为5元,1只B型节能灯的售价为7元(2)设购买A型节能灯a个,则购买B型节能灯(80-a)个,总费用为w元由题意得:a≤3(80-a)解得a≤60又∵w=5a+7(80-a)=-2a+560∴w随a的增大而减小∴当a取最大值60时,w有最小值w=-2×60+560=440即购买60只A型节能灯,20只B型节能灯最省钱【点睛】本题考查了解二元一次方程组和一元一次不等式组的应用,能根据题意列出方程组或不等式组是解此题的关键.23、(1)n(m-1)1;(1)(x-3)(4x+3)【解析】分析:(1)先提取公因式n,再根据完全平方公式进行二次分解.(1)利用平方差公式及提公因式法分解即可.详解:(1)原式=n(m1-1m+1)=n(m-1)1.(1)原式=x1-9+3x(x-3)=(x+3)(x-3)+3x(x-3)=(x-3)(x+3+3x)=(x-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度影视制作合同条款详解2篇
- 的社区腊八节活动的策划方案
- 咽部创伤的临床护理
- 2024年地震前兆观测仪器项目资金申请报告代可行性研究报告
- 2024年度高层建筑-钢结构加工合同2篇
- 2024年互联网旅游行业现状分析:3月二线城市互联网旅游活跃市场上涨140.7%
- 基于云计算的政务信息资源共享协议(2024版)
- 游戏进程与市场反馈
- 2024年度物流服务合同的服务范围和质量保证2篇
- 二零二四年度许可使用合同的标的品牌使用范围与许可期限3篇
- -人教版八年级英语上册Unit-9-Can-you-come-to-my-party课件
- 初中语文人教七年级上册群文阅读 -
- 科幻小说赏读知到章节答案智慧树2023年杭州师范大学
- 2024年企业经营工作计划10篇
- 跨国公司跨文化管理课程
- 民用无人机驾驶员训练手册
- 建设工程质量检测和建筑材料试验收费项目及标准指导性
- 连续型随即变量
- 危废培训心得(一)(3篇)
- GB/T 33718-2017企业合同信用指标指南
- 抱抱“暴暴”应对负面情绪 课件 高中心理健康
评论
0/150
提交评论