2024年河西成功学校八年级下册数学期末教学质量检测试题含解析_第1页
2024年河西成功学校八年级下册数学期末教学质量检测试题含解析_第2页
2024年河西成功学校八年级下册数学期末教学质量检测试题含解析_第3页
2024年河西成功学校八年级下册数学期末教学质量检测试题含解析_第4页
2024年河西成功学校八年级下册数学期末教学质量检测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年河西成功学校八年级下册数学期末教学质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积可以表示为()A.4S1 B.4S2 C.4S2+S3 D.2S1+8S32.下列分解因式,正确的是()A. B.C. D.3.当有意义时,a的取值范围是()A.a≥2 B.a>2 C.a≠2 D.a≠-24.下列图形中,是轴对称图形的是()A. B. C. D.5.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,AB=5,AC+BD=20,则△AOB的周长为()A.10 B.20C.15 D.256.如图,矩形ABCD中,AB=6,BC=8,E是AD边上一点,连接CE,将△CDE沿CE翻折,点D的对应点是F,连接AF,当△AEF是直角三角形时,AF的值是()A.4 B.2 C.4,2 D.4,5,27.下列方程中是一元二次方程的是()A.2x+1=0 B.x2+y=1 C.x2+2=0 D.8.在下列交通标志中,是中心对称图形的是()A. B.C. D.9.下列函数的图象不经过第一象限,且y随x的增大而减小的是()A. B. C. D.10.矩形具有而平行四边形不一定具有的性质是()A.对边相等 B.对角相等C.对角线相等 D.对角线互相平分二、填空题(每小题3分,共24分)11.如图,是内一点,且在的垂直平分线上,连接,.若,,,则点到的距离为_________.12.如图,在平面直角坐标系xOy中,直线l1:y=mx-2与直线l2:y=x+n相交于点P,则关于x,y的二元一次方程组13.计算:-=________.14.如图,将正方形OABC放在平面直角坐标系中,O是坐标原点,点A的坐标是(2,3),则C点坐标是_____.15.如图,AO=OC,BD=16cm,则当OB=___cm时,四边形ABCD是平行四边形.16.如图,D是△ABC中AC边上一点,连接BD,将△BDC沿BD翻折得△BDE,BE交AC于点F,若,△AEF的面积是1,则△BFC的面积为_______17.某花木场有一块如等腰梯形ABCD的空地(如图),各边的中点分别是E、F、G、H,用篱笆围成的四边形EFGH场地的周长为40cm,则对角线________.18.分解因式_____.三、解答题(共66分)19.(10分)“机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调査了部分学生,调查结果分为五种:A非常了解,B比较了解,C基本了解,D不太了解,E完全不知.实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图请根据以上信息,解答下列问题:(1)本次共调查了名学生,扇形统计图中D所对应扇形的圆心角为度;(2)把这幅条形统计图补充完整(画图后请标注相应的数据);(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有名.20.(6分)如图,△ABC与△CDE都是等边三角形,点E、F分别在AC、BC上,且EF∥AB(1)求证:四边形EFCD是菱形;(2)设CD=2,求D、F两点间的距离.21.(6分)解方程:(1);(2);(3);(4).22.(8分)如图,已知一次函数y=﹣x+b的图象过点A(0,3),点p是该直线上的一个动点,过点P分别作PM垂直x轴于点M,PN垂直y轴于点N,在四边形PMON上分别截取:PC=MP,MB=OM,OE=ON,ND=NP.(1)b=;(2)求证:四边形BCDE是平行四边形;(3)在直线y=﹣x+b上是否存在这样的点P,使四边形BCDE为正方形?若存在,请求出所有符合的点P的坐标;若不存在,请说明理由.23.(8分)如图,等腰△ABC中,已知AC=BC=2,AB=4,作∠ACB的外角平分线CF,点E从点B沿着射线BA以每秒2个单位的速度运动,过点E作BC的平行线交CF于点F.(1)求证:四边形BCFE是平行四边形;(2)当点E是边AB的中点时,连接AF,试判断四边形AECF的形状,并说明理由;(3)设运动时间为t秒,是否存在t的值,使得以△EFC的其中两边为邻边所构造的平行四边形恰好是菱形?不存在的,试说明理由;存在的,请直接写出t的值.答:t=________.24.(8分)如图,在四边形ABCD中,AD//BC,∠D=90°,E为边BC上一点,且EC=AD,连接(1)求证:四边形AECD是矩形;

(2)若AC平分∠DAB,AB=5,EC=2,求AE的长,25.(10分)如图,菱形ABCD的对角线AC和BD交于点O,AB=10,∠ABC=60°,求菱形ABCD的面积.26.(10分)先化简,然后从的范围内选取一个合适的整数作为的值代入求值.

参考答案一、选择题(每小题3分,共30分)1、A【解析】

设等腰直角三角形的直角边为a,正方形边长为c,求出S2(用a、c表示),得出S1,S2,S3之间的关系,由此即可解决问题.【详解】设等腰直角三角形的直角边为a,正方形边长为c,则S2=(a+c)(a-c)=a2-c2,∴S2=S1-S3,∴S3=2S1-2S2,∴平行四边形面积=2S1+2S2+S3=2S1+2S2+2S1-2S2=4S1.故选A.【点睛】本题考查平行四边形的性质、直角三角形的面积等知识,解题的关键是求出S1,S2,S3之间的关系2、B【解析】

把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式.据此作答.【详解】A.和因式分解正好相反,故不是分解因式;B.是分解因式;C.结果中含有和的形式,故不是分解因式;D.x2−4y2=(x+2y)(x−2y),解答错误.故选B.【点睛】本题考查的知识点是因式分解定义和十字相乘法分解因式,解题关键是注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止.3、B【解析】

根据二次根式及分式有意义的条件即可解答.【详解】∵有意义,∴a-2>0,∴a>2.【点睛】本题考查了二次根式及分式有意义的条件,熟知二次根式及分式有意义的条件是解决问题的关键.4、B【解析】

轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能完全重合,根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、不符合定义,不是轴对称图形,故本选项错误;B、符合定义是轴对称图形,故本选项正确;C、不符合定义,不是轴对称图形,故本选项错误;D、不符合定义,不是轴对称图形,故本选项错误.故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5、C【解析】

根据平行四边形的性质求解即可.【详解】∵四边形ABCD是平行四边形∴∵AC+BD=20∴∴△AOB的周长故答案为:C.【点睛】本题考查了三角形的周长问题,掌握平行四边形的性质是解题的关键.6、C【解析】

当∠AFE=90°时,由∠AFE=∠EFC=90°可知点F在AC上,先依据勾股定理求得AC的长,然后结合条件FC=DC=3,可求得AF的长;当∠AFE=90°,可证明四边形CDEF为正方形,则EF=3,AE=4,最后,依据勾股定理求解即可.【详解】如下图所示:当点F在AC上时.∵AB=3,BC=8,∴AC=1.由翻折的性质可知:∠EFC=∠D=90°,CF=CD=3,∴AF=4.如下图所示:∵∠FED=∠D=∠DCF=90°,∴四边形CDEF为矩形.由翻折的性质可知EF=DE,∴四边形CDEF为正方形.∴DE=EF=3.∴AE=4.∴AF===4.综上所述,AF的长为4或4.故选:C.【点睛】本题主要考查的是翻折的性质,依据题意画出符合题意的图形是解题的关键.7、C【解析】

本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为1.由这两个条件得到相应的关系式,再求解即可.【详解】A、该方程是一元一次方程,故本选项错误.B、该方程是二元二次方程,故本选项错误.C、该方程是一元二次方程,故本选项正确.D、该方程分式方程,故本选项错误.故选C.【点睛】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=1(且a≠1).8、C【解析】

解:A图形不是中心对称图形;B不是中心对称图形;C是中心对称图形,也是轴对称图形;D是轴对称图形;不是中心对称图形故选C9、A【解析】

分别分析各个一次函数图象的位置.【详解】A.,图象经过第二、四象限,且y随x的增大而减小;B.,图象经过第一、二、三象限;C.,图象经过第一、二、四象限;D.,图象经过第一、三、四象限;所以,只有选项A符合要求.故选A【点睛】本题考核知识点:一次函数的性质.解题关键点:熟记一次函数的性质.10、C【解析】

根据矩形和平行四边形的性质进行解答即可.【详解】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.矩形的对角线相等,而平行四边形的对角线不一定相等.故选C.【点睛】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.如,矩形的对角线相等.二、填空题(每小题3分,共24分)11、【解析】

连接OB,过点O作OD⊥AB于D,先证明△ABC为直角三角形,再由S△ABO=AO·OB=AB·OD求解即可.【详解】解:如图,连接OB,过点O作OD⊥AB于D,∵在的垂直平分线上,∴OB=OC,∵,,,∴OA2+OB2=32+42=25=AB2,∴△ABC为直角三角形,∵S△ABO=AO·OB=AB·OD,∴OD==.故答案为.【点睛】此题主要考查了垂直平分线的性质,勾股定理的逆定理及三角形的面积。正确的添加辅助线是解决问题的关键.12、x=1【解析】

关于x、y的二元一次方程组mx-y=2x-y=-n的解即为直线l1:y=mx-2与直线l2:y=x+n的交点P(1,2【详解】解:∵直线l1:y=mx-2与直线l2:y=x+n相交于点P(1,2),∴关于x、y的二元一次方程组mx-y=2x-y=-n的解是x=1故答案为x=1y=2【点睛】本题考查了对一次函数与二元一次方程组的关系的理解和运用,主要考查学生的观察图形的能力和理解能力,题目比较典型,但是一道比较容易出错的题目.13、2【解析】试题解析:原式故答案为14、(﹣3,2).【解析】

过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.【详解】过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,如图所示:∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=3,CE=OD=2,∵点C在第二象限,∴点C的坐标为(﹣3,2).故答案为(﹣3,2).【点睛】本题考查了全等三角形的判定与性质,正方形的性质,坐标与图形性质,作辅助线构造出全等三角形是解题的关键.15、1【解析】

根据对角线互相平分的四边形是平行四边形可得OB=1cm时,四边形ABCD是平行四边形.【详解】当OB=1cm时,四边形ABCD是平行四边形,∵BD=16cm,OB=1cm,∴BO=DO,又∵AO=OC,∴四边形ABCD是平行四边形,故答案为1.【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.16、2.5【解析】

由,可得,由折叠可知,可得,由可得,则,又,可得,即可求得,然后求得.【详解】解:∵,∴,由折叠可知,∴,∴,∵,∴,∴,∵,∴,解得:,∴;故答案为2.5.【点睛】本题主要考查了折叠问题,翻折变换(折叠问题)实质上就是轴对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解题的关键是由线段的关系得到面积的关系.17、20cm【解析】

根据等腰梯形的性质及三角形中位线的性质可推出四边形EFGH为菱形,根据菱形的性质可求得其边长,再根据三角形中位线的性质即可求得梯形对角线AC的长度.【详解】连接BD∵四边形ABCD是等腰梯形∴AC=BD∵各边的中点分别是E.F.G、H∴HG=AC=EF,EH=BD=FG∴HG=EH=EF=FG,∴四边形EFGH是菱形∵四边形EFGH场地的周长为40cm∴EF=10cm∴AC=20cm【点睛】本题考查菱形的判定及等腰梯形的性质,熟练掌握菱形的基本性质是解题关键.18、【解析】

提取公因数4,再根据平方差公式求解即可.【详解】故答案为:【点睛】本题考查了因式分解的问题,掌握平方差公式是解题的关键.三、解答题(共66分)19、(1)300;54;(2)条形统计图补充见解析;(3)1.【解析】

(1)从条形统计图中,可得到“B”的人数108人,从扇形统计图中可得“B”组占36%,用人数除以所占的百分比即可求出调查人数,求出“D”组所占整体的百分比,用360°去乘这个百分比即可得出D所对应扇形的圆心角度数;(2)用总人数乘以“C”组所占百分比求出“C”组的人数,再补全统计图;(3)求出“A”组所占的百分比,用样本估计总体进行计算即可.【详解】(1)共调查学生人数为:=300,扇形D比例:=15%,圆心角:=54°故答案为:300;54;(2)25%×300=75,条形统计图补充如下:(3)×800=1.故答案为:1.【点睛】本题考查条形统计图、扇形统计图的特点及制作方法,明确统计图中各个数据之间的关系是解决问题的关键,善于从两个统计图中获取相关数据是解决问题的前提.20、(1)见解析;(2)【解析】

(1)由等边三角形的性质得出ED=CD=CE,证出△CEF是等边三角形,得出EF=CF=CE,得出ED=CD=EF=CF,即可得出结论;(2)连接DF,与CE相交于点G,根据菱形的性质求出DG,即可得出结果.【详解】(1)证明:∵△ABC与△CDE都是等边三角形,∴ED=CD=CE,∠A=∠B=∠BCA=60°.∴EF∥AB.∴∠CEF=∠A=60°,∠CFE=∠B=60°,∴∠CEF=∠CFE=∠ACB,∴△CEF是等边三角形,∴EF=CF=CE,∴ED=CD=EF=CF,∴四边形EFCD是菱形.(2)连接DF与CE交于点G∵四边形EFCD是菱形∴DF⊥CE,DF=2DG∵CD=2,△EDC是等边三边形∴CG=1,DG=∴DF=2DG=,即D、F两点间的距离为【点睛】本题考查了菱形的判定与性质、等边三角形的判定与性质、勾股定理等知识;熟练掌握菱形的判定与性质是解题的关键.21、(1)x1=﹣3,x2=3;(2)x1=0,x2=﹣2;(3),;(4)x=﹣1【解析】

(1)利用因式分解法解方程;(2)利用因式分解法解方程;(3)利用配方法解方程;(4)去分母得到2(2x+1)=3(x﹣1),然后解整式方程后进行检验确定原方程的解.【详解】解:(1)(x+3)(x﹣3)=0,x+3=0或x﹣3=0,所以x1=﹣3,x2=3;(2)x(x+2)=0,x=0或x+2=0,所以x1=0,x2=﹣2;(3)x2﹣6x+9=8,(x﹣3)2=8,x﹣3=±2,所以,;(4)两边同时乘以(x﹣1)(2x+1),得2(2x+1)=3(x﹣1),解得x=﹣1,经检验,原方程的解为x=﹣1.【点睛】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了解分式方程.22、(1)1;(2)证明见解析;(1)在直线y=﹣x+b上存在这样的点P,使四边形BCDE为正方形,P点坐标是(2,2)或(﹣6,6).【解析】分析:(1)根据待定系数法,可得b的值;(2)根据矩形的判定与性质,可得PM与ON,PN与OM的关系,根据PC=MP,MB=OM,OE=ON,NO=NP,可得PC与OE,CM与NE,BM与ND,OB与PD的关系,根据全等三角形的判定与性质,可得BE与CD,BC与DE的关系,根据平行四边形的判定,可得答案;(1)根据正方形的判定与性质,可得BE与BC的关系,∠CBM与∠EBO的关系,根据全等三角形的判定与性质,可得OE与BM的关系,可得P点坐标间的关系,可得答案.本题解析:(1)一次函数y=﹣x+b的图象过点A(0,1),1=﹣×0+b,解得b=1.故答案为:1;(2)证明:过点P分别作PM垂直x轴于点M,PN垂直y轴于点N,∴∠M=∠N=∠O=90°,∴四边形PMON是矩形,∴PM=ON,OM=PN,∠M=∠O=∠N=∠P=90°.∵PC=MP,MB=OM,OE=ON,NO=NP,∴PC=OE,CM=NE,ND=BM,PD=OB,在△OBE和△PDC中,,∴△OBE≌△PDC(SAS),BE=DC.在△MBC和△NDE中,,∴△MBC≌△NDE(SAS),DE=BC.∵BE=DC,DE=BC,∴四边形BCDE是平行四边形;(1)设P点坐标(x,y),当△OBE≌△MCB时,四边形BCDE为正方形,OE=BM,当点P在第一象限时,即y=x,x=y.P点在直线上,,解得,当点P在第二象限时,﹣x=y,解得在直线y=﹣x+b上存在这样的点P,使四边形BCDE为正方形,P点坐标是(2,2)或(﹣6,6).点睛:本题考查了一次函数的综合题,利用了全等三角形的判定与性质,平行四边形的判定与性质,正方形的性质,注意数形结合.23、(1)见解析;(2)四边形AECF是矩形,理由见解析;(3)秒或5秒或2秒【解析】

(1)已知EF∥BC,结合已知条件利用两组对边分别平行证明BCFE是平行四边形;因为AC=BC,等角对等边,得∠B=∠BAC,CF平分∠ACH,则∠ACF=∠FCH,结合∠ACH=∠B+∠BAC=∠ACF+∠FCH,等量代换得∠FCH=∠B,则同位角相等两直线平行,得BE∥CF,结合EF∥BC,证得四边形BCFE是平行四边形;(2)先证∠AED=90°,再证四边形AECF是平行四边形,则四边形AECF是平行四边形是矩形;

AC=BC,E是AB的中点,由等腰三角形三线合一定理知CE⊥AB,因为四边形BCFE是平行四边形,得CF=BE=AE,AE∥CF,一组对边平行且相等,且有一内角是直角,则四边形AECF是矩形;(3)分三种情况进行①以EF和CF两边为邻边所构造的平行四边形恰好是菱形时,则邻边BE=BC,这时根据S=vt=2t=,求出t即可;②以CE和CF两边为邻边所构造的平行四边形恰好是菱形时,过C作CD⊥AB于D,AC=BC,三线合一则BD的长可求,在Rt△BDC中运用勾股定理求出CD的长,把ED长用含t的代数式表示出来,现知EG=CF=EC=EB=2t,在Rt△EDC中,利用勾股定理列式即可求出t;③以CE和EF两边为邻边所构造的平行四边形恰好是菱形时,则CA=AF=BC,此时E与A重合,则2t=AB=4,求得t值即可.【详解】(1)证明:如图1,∵AC=BC,∴∠B=∠BAC,∵CF平分∠ACH,∴∠ACF=∠FCH,∵∠ACH=∠B+∠BAC=∠ACF+∠FCH,∴∠FCH=∠B,∴BE∥CF,∵EF∥BC,∴四边形BCFE是平行四边形(2)解:四边形AECF是矩形,理由是:如图2,∵E是AB的中点,AC=BC,∴CE⊥AB,∴∠AEC=90°,由(1)知:四边形BCFE是平行四边形,∴CF=BE=AE,∵AE∥CF,∴四边形AECF是矩形(3)秒或5秒或2秒分三种情况:①以EF和CF两边为邻边所构

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论