河南省各地(部分地区)2024年八年级数学第二学期期末经典试题含解析_第1页
河南省各地(部分地区)2024年八年级数学第二学期期末经典试题含解析_第2页
河南省各地(部分地区)2024年八年级数学第二学期期末经典试题含解析_第3页
河南省各地(部分地区)2024年八年级数学第二学期期末经典试题含解析_第4页
河南省各地(部分地区)2024年八年级数学第二学期期末经典试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省各地(部分地区)2024年八年级数学第二学期期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列函数中,是的正比例函数的是()A. B. C. D.2.为了改善居民住房条件,某市计划用未来两年的时间,将城镇居民的住房面积由现在的人均20平方厘米提高到24.2平方厘米,每年的增长率相同,设为x,则可列方程是()A.(1+x)2=24.2 B.20(1+x)2=24.2C.(1﹣x)2=24.2 D.20(1﹣x)2=24.23.如图,过正方形的顶点作直线,点、到直线的距离分别为和,则的长为()A. B. C. D.4.式子有意义,则a的取值范围是()A.且 B.或C.或 D.且5.已知正比例函数y=(m﹣1)x的图象上两点A(x1,y1),B(x2,y2),当x1<x2时,有y1>y2,那么m的取值范围是()A.m<1 B.m>1 C.m<2 D.m>06.在平行四边形ABCD中,AB=3,BC=4,当平行四边形ABCD的面积最大时,下结论正确的有()①AC=5②∠A+∠C=180°③AC⊥BD④AC=BDA.①②④ B.①②③ C.②③④ D.①③④7.如图,△ABC的面积为1,分别取AC、BC两边的中点A1、B1,则四边形A1ABB1的面积为,再分别取A1C、B1C的中点A2、B2,取A2C、B2C的中点A3、B3,依次取下去…利用这一图形,能直观地计算出()A.1 B. C. D.8.1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.9.下列式子因式分解正确的是()A.x2+2x+2=(x+1)2+1 B.(2x+4)2=4x2+16x+16C.x2﹣x+6=(x+3)(x﹣2) D.x2﹣1=(x+1)(x﹣1)10.篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队预计在2012﹣2013赛季全部32场比赛中最少得到48分,才有希望进入季后赛.假设这个队在将要举行的比赛中胜x场,要达到目标,x应满足的关系式是()A.2x+(32﹣x)≥48 B.2x﹣(32﹣x)≥48C.2x+(32﹣x)≤48 D.2x≥48二、填空题(每小题3分,共24分)11.我国古代数学著作《九章算术》有一个问题:一根竹子高1丈,折断后竹子顶端落在离竹子底端3尺处,1丈=10尺,那么折断处离地面的高度是__________尺.12.如图,直线y=kx+6与x轴、y轴分别交于点E、F.点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).若点P(x,y)是第二象限内的直线上的一个动点.当点P运动到_____(填P点的坐标)的位置时,△OPA的面积为1.13.一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a>0的解集是_______14.如图,正方形和正方形中,点在上,,,是的中点,那么的长是__________(用含、的代数式表示).15.如图,将绕着直角顶点顺时针旋转,得到,连接,若,则__________度.16.小强调查“每人每天的用水量”这一问题时,收集到80个数据,最大数据是70升,最小数据是42升,若取组距为4,则应分为_________组绘制频数分布表.17.如图,点A的坐标为,点B在直线上运动则线段AB的长度的最小值是___.18.如图,将5个边长都为4cm的正方形按如图所示的方法摆放,点A、B、C、D是正方形的中心,则正方形重叠的部分(阴影部分)面积和为_____.三、解答题(共66分)19.(10分)为了预防流感,某学校在休息日用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(mg)与时间t(h)成正比;药物释放完毕后,y与t之间的函数解析式为y=at(1)写出从释放药物开始,y与t之间的两个函数解析式及相应的自变量取值范围;(2)据测定,当空气中每立方米的含药量降低到0.25mg以下时,学生方可进入教室,那么药物释放开始,至少需要经过多少小时,学生才能进入教室?20.(6分)已知,一次函数的图象与x轴、y轴分别交于点A和B.求A,B两点的坐标,并在如图的坐标系中画出函数的图象;若点C在第一象限,点D在x轴的正半轴上,且四边形ABCD是菱形,直接写出C,D两点的坐标.21.(6分)上合组织峰会期间,甲、乙两家商场都将平时以同样价格出售相同的商品进行让利酬宾,其中甲商场所有商品按7折出售,乙商场对一次购物中超过200元后的价格部分打6折.(1)以x(单位:元)表示商品原价,y(单位:元)表示付款金额,分别就两家商场的让利方式写出y与x之间的函数解析式;(2)上合组织峰会期问如何选择这两家商场去购物更省钱?22.(8分)嘉琪准备完成题目“计算:”时,发现“”处的数字印刷得不清楚.他把“”处的数字猜成3,请你计算.23.(8分)先化简,再求值:,其中a=624.(8分)学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.25.(10分)如图,已知ABC,利用尺规在AC边上求作点D,使AD=BD(保留作图痕迹,不写作法)26.(10分)先化简再求值:,其中a=-2。

参考答案一、选择题(每小题3分,共30分)1、A【解析】

根据正比例函数的定义:一般地,形如是常数,的函数叫做正比例函数,其中叫做比例系数可选出答案.【详解】解:、是的正比例函数,故此选项正确;、是一次函数,故此选项错误;、是反比例函数,故此选项错误;、是一次函数,故此选项错误;故选:.【点睛】本题主要考查了正比例函数定义,关键是掌握正比例函数是形如是常数,的函数.2、B【解析】

如果设年增长率为x,则可以根据“住房面积由现在的人均约为10平方厘米提高到14.1平方厘米”作为相等关系得到方程10(1+x)1=14.1.【详解】解:设每年的增长率为x,根据题意得10(1+x)1=14.1,故选:B.【点睛】本题考查列一元二次方程,解题的关键是读懂题意,由题意得到等式10(1+x)1=14.1.3、A【解析】

先证明△ABE≌△BCF,得到BE=CF=1,在Rt△ABE中利用勾股定理可得AB=2,由此可得AC长.【详解】解:∵四边形ABCD是正方形,

∴AB=AC,∠ABC=90°.

∵∠ABE+∠EAB=90°,∠ABE+∠CBF=90°,

∴∠EAB=∠CBF.

又∠AEB=∠CFB=90°,

∴△ABE≌BCF(AAS).

∴BE=CF=1.

在Rt△ABE中,利用勾股定理可得AB===2.

则AC=AB=2.

故选A.【点睛】本题主要考查了正方形的性质、全等三角形的判定和性质,以及勾股定理,解题的关键是通过全等转化线段使其划归于一直角三角形中,再利用勾股定理进行求解.4、A【解析】

根据零指数幂的意义、分式有意义的条件列出不等式,解不等式即可.【详解】解:由题意得,a-1≠0,a+1≠0,解得,a≠1且a≠-1,故选:A.【点睛】本题考查的是分式有意义的条件、零指数幂,掌握分式有意义的条件是分母不等于零是解题的关键.5、A【解析】

据正比例函数的增减性可得出(m-1)的范围,继而可得出m的取值范围.【详解】解:根据题意,知:y随x的增大而减小,则m﹣1<0,即m<1.故选:A.【点睛】能够根据两点坐标之间的大小关系,判断变化规律,再进一步根据正比例函数图象的性质:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.列不等式求解集.6、A【解析】

当▱ABCD的面积最大时,四边形ABCD为矩形,得出∠A=∠B=∠C=∠D=90°,AC=BD,根据勾股定理求出AC,即可得出结论.【详解】根据题意得:当▱ABCD的面积最大时,四边形ABCD为矩形,∴∠BAD=∠ABC=∠BCD=∠CDA=90°,AC=BD,∴∠BAD+∠BCD=180°,AC==5,①正确,②正确,④正确;③不正确;故选A.【点睛】本题考查了平行四边形的性质、矩形的性质以及勾股定理;得出▱ABCD的面积最大时,四边形ABCD为矩形是解决问题的关键.7、C【解析】

对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.【详解】解:∵A1、B1分别是AC、BC两边的中点,且△ABC的面积为1,∴△A1B1C的面积为∴四边形A1ABB1的面积=△ABC的面积-△A1B1C的面积

;∴四边形A2A1B1B2的面积=的面积-的面积

…∴第n个四边形的面积

∴故答案为:C【点睛】本题主要考查了学生通过特例分析从而归纳总结出一般结论的能力.8、D【解析】

根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、是轴对称图形,故D符合题意.故选D.【点睛】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9、D【解析】

利用因式分解定义,以及因式分解的方法判断即可.【详解】解:A、x2+2x+2不能进行因式分解,故A错误;B、(2x+4)2=4x2+16x+16不符合因式分解的定义,故B错误;C、,等式左右不相等,故C错误;D、x2﹣1=(x+1)(x﹣1),正确故选:D.【点睛】本题考查了因式分解的概念及判断,掌握因式分解的定义是解题的关键.10、A【解析】这个队在将要举行的比赛中胜x场,则要输(32﹣x)场,胜场得分2x分,输场得分(32﹣x)分,根据胜场得分+输场得分≥48可得不等式.解:这个队在将要举行的比赛中胜x场,则要输(32﹣x)场,由题意得:2x+(32﹣x)≥48,故选A.二、填空题(每小题3分,共24分)11、4.1【解析】

竹子折断后刚好构成一直角三角形,设竹子折断处离地面的高度是x尺,则斜边为(10-x)尺.利用勾股定理解题即可.【详解】解:1丈=10尺,

设折断处离地面的高度为x尺,则斜边为(10-x)尺,

根据勾股定理得:x2+32=(10-x)2

解得:x=4.1.

答:折断处离地面的高度为4.1尺.

故答案为:4.1.【点睛】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.12、(﹣4,3).【解析】

求出直线EF的解析式,由三角形的面积公式构建方程即可解决问题.【详解】解:∵点E(﹣8,0)在直线y=kx+6上,∴﹣8k+6=0,∴k=,∴y=x+6,∴P(x,x+6),由题意:×6×(x+6)=1,∴x=﹣4,∴P(﹣4,3),故答案为(﹣4,3).【点睛】本题考查一次函数图象上的点的坐标特征,三角形的面积等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.13、-3<x<-2.【解析】

kx+b>x+a>0的解集是一次函数y1=kx+b在y2=x+a的图象的上边部分,且在x轴上方部分,对应的x的取值范围,据此即可解答.【详解】解:观察图像可得:kx+b>x+a>0的解集是-3<x<-2.故答案为:-3<x<-2.【点睛】本题考查一次函数的图象与一元一次不等式的关系,理解不等式kx+b>x+a>0的解集是:一次函数y1=kx+b在y2=x+a的图象的上边且在x轴上方部分,对应的x的取值范围是关键.14、【解析】

连接AC、CF,根据正方形的性质得到∠ACF=90°,根据勾股定理求出AF的长,根据直角三角形中,斜边上的中线等于斜边的一半计算即可.【详解】解:连接AC、CF,在正方形ABCD和正方形CEFG中,∠ACG=45°,∠FCG=45°,∴∠ACF=90°,∵BC=a,CE=b,,由勾股定理得:,∵∠ACF=90°,H是AF的中点,∴CH=AF=.【点睛】本题考查的是直角三角形的性质、勾股定理的应用、正方形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.15、70【解析】

首先由旋转的性质,得△ABC≌△A′B′C,然后利用等腰直角三角形的性质等角转换,即可得解.【详解】由旋转的性质,得△ABC≌△A′B′C,∴AC=A′C,∠BAC=∠B′A′C,∠ACA′=90°,∴∠CAA′=∠CA′A=45°∵∴∠BAC=25°∴∠BAA′=∠BAC+∠CAA′=25°+45°=70°故答案为:70.【点睛】此题主要考查利用全等三角形旋转求解角度,熟练掌握,即可解题.16、1【解析】

解:应分(70-42)÷4=7,

∵第一组的下限应低于最小变量值,最后一组的上限应高于最大变量值,∴应分1组.

故答案为:1.17、【解析】

当线段AB最短时,直线AB与直线垂直,根据勾股定理求得AB的最短长度.【详解】解:当线段AB最短时,直线AB与直线垂直,过点A作直线l,因为直线是一、三象限的角平分线,所以,所以,所以,,即,所以.故答案是:.【点睛】考查了垂线段最短的性质,一次函数图象上点的坐标特征,勾股定理的应用,熟知垂线段最短是解题的关键.18、16cm2【解析】

根据正方形的性质,每一个阴影部分的面积等于正方形的,再根据正方形的面积公式列式计算即可得解.【详解】解:∵点A、B、C、D分别是四个正方形的中心∴每一个阴影部分的面积等于正方形的∴正方形重叠的部分(阴影部分)面积和故答案为:【点睛】本题考查了正方形的性质以及与面积有关的计算,不规则图形的面积可以看成规则图形面积的和或差,正确理解运用正方形的性质是解题的关键.三、解答题(共66分)19、(1)y=23t(0≤t≤3【解析】

(1)将点代入函数关系式,解得,有将代入,得,所以所求反比例函数关系式为;再将代入,得,所以所求正比例函数关系式为.(2)解不等式,解得,所以至少需要经过6小时后,学生才能进入教室.20、(1)A,B,画图见解析;(2),.【解析】

(1)先求出A,B两点的坐标,再画函数图象;(2)根据图形,结合勾股定理和菱形性质推出边长,得到C.D的坐标.【详解】解:将代入,可得;

将,代入,可得;

点A的坐标为,点B的坐标为,

如图所示,直线AB即为所求;

由点A的坐标为,点B的坐标为,可得,,中,,四边形ABCD是菱形,,,,.【点睛】本题考核知识点:一次函数与菱形.解题关键点:熟记菱形的判定与性质.21、(1)甲商场:y=0.7x,乙商场:当0≤x≤200时,y=x,当x>200时,y=200+0.6(x﹣200)=0.6x+80;(2)当x<800时,在甲商场购买比较省钱,当x=800时,在甲乙两商场购买花钱一样,当x>800时,在乙商场购买省钱.【解析】

(1)根据题意可以分别求出甲乙两商场中y与x的函数关系式;(2)根据(1)中的函数关系式和题意可以解答本题.【详解】.解:(1)由题意可得,甲商场:y=0.7x,乙商场:当0≤x≤200时,y=x,当x>200时,y=200+0.6(x﹣200)=0.6x+80;(2)令0.7x=0.6x+80,得x=800,∴当x<800时,在甲商场购买比较省钱,当x=800时,在甲乙两商场购买花钱一样,当x>800时,在乙商场购买省钱.【点睛】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.22、.【解析】

先将括号内的二次根式进行化简再进行乘法计算,最后去括号,合并即可得到结果.【详解】原式.【点睛】本题考查了二次根式的混合运算,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算.23、【解析】

先根据分式的混合运算法则进行化简,注意先做小括号里面的,然后代入求值即可.【详解】解:===当a=6时,原式=.【点睛】本题考查分式的化简求值,掌握分式混合运算的运算法则和顺序正确计算是解题关键.24、(1)A,B两型桌椅的单价分别为600元,800元;(2)y=﹣2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论