版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖南长沙明德集团八年级数学第二学期期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.一艘轮船和一艘快艇沿相同路线从甲港岀发匀速行驶至乙港,行驶路程随时间变化的图象如图,则下列结论错误的是()A.轮船的速度为20千米时 B.轮船比快艇先出发2小时C.快艇到达乙港用了6小时 D.快艇的速度为40千米时2.如图所示,已知四边形ABCD的对角线AC、BD相交于点O,则下列能判断它是正方形的条件是()A., B.C.,, D.,3.若分式的值为5,则x、y扩大2倍后,这个分式的值为()A. B.5 C.10 D.254.如图,已知直线与相交于点(2,),若,则的取值范围是()A. B. C. D.5.若关于x的一元二次方程kx2﹣2x+1=0有两个不相等的实数根,则实数k的取值范围是()A.k>1 B.k<1 C.k>1且k≠0 D.k<1且k≠06.符.则下列不等式变形错误的是()A. B.C. D.7.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度8.若关于的一元二次方程的一个根是0,则的值是()A.1 B.-1 C.1或-1 D.9.下列二次根式中是最简二次根式的是()A. B. C. D.10.如图,在平面直角坐标系中,直线与双曲线交于、两点,且点的坐标为,将直线向上平移个单位,交双曲线于点,交轴于点,且的面积是.给出以下结论:(1);(2)点的坐标是;(3);(4).其中正确的结论有A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共24分)11.如图,在△ABC中,∠BAC=90°,AB=4,AC=6,点D、E分别是BC、AD的中点,AF∥BC交CE的延长线于F.则四边形AFBD的面积为_____.12.如图,点是函数的图象上的一点,过点作轴,垂足为点.点为轴上的一点,连结、.若的面积为,则的值为_________.13.若数据8,9,7,8,x,3的平均数是7,则这组数据的众数是________.14.观察下列各式:(x-1)(x+1)=x2-1;(x-1)(x2+x+1)=x3-1;(x-1)(x3+x2+x+1)=x4-1,根据前面各式的规律可得(x-1)(xn+xn-1+…+x+1)=______(其中n为正整数).15.学校位于小亮家北偏东35方向,距离为300m,学校位于大刚家南偏东85°方向,距离也为300m,则大刚家相对于小亮家的位置是________.16.在Rt△ABC中,∠C=90°,∠A=30°,BC=2,D,E分别是AC,BC的中点,则DE的长等于_____.17.如图,两张等宽的纸条交叉叠放在一起,若重叠都分构成的四边形ABCD中,AB=3,BD=1.则AC的长为_________________.18.在一个矩形中,若一个角的平分线把一条边分成长为3cm和4cm的两条线段,则该矩形周长为_________三、解答题(共66分)19.(10分)甲、乙两人加工一种零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用的时间相等.(1)求甲每小时加工多少个零件?(2)由于厂家在12小时内急需一批这种零件不少于1000件,决定由甲、乙两人共同完成.乙临时有事耽搁了一段时间,先让甲单独完成一部分零件后两人合作完成剩下的零件.求乙最多可以耽搁多长时间?20.(6分)如图,在四边形中,,,,点是的中点.点以每秒1个单位长度的速度从点出发,沿向点运动;同时,点以每秒2个单位长度的速度从点出发,沿向点运动.点停止运动时,点也随之停止运动.求当运动时间为多少秒时,以点,,,为顶点的四边形是平行四边形.21.(6分)某工厂准备加工600个零件,在加工了100个零件后,采取了新技术,使每天的工作效率是原来的2倍,结果共用7天完成了任务,求该厂原来每天加工多少个零件?22.(8分)如图,已知△ABE,AB、AE的垂直平分线m1、m2分别交BE于点C、D,且BC=CD=DE.(1)求证:△ACD是等边三角形;(2)求∠BAE的度数.23.(8分)如图,在平面直角坐标系可中,直线y=x+1与y=﹣x+3交于点A,分别交x轴于点B和点C,点D是直线AC上的一个动点.(1)求点A,B,C的坐标;(2)在直线AB上是否存在点E使得四边形EODA为平行四边形?存在的话直接写出的值,不存在请说明理由;(3)当△CBD为等腰三角形时直接写出D坐标.24.(8分)计算:(+2)(-2)+25.(10分)根据指令[s,α](s≥0,0°<α<180°),机器人在平面上能完成下列动作:先原地逆时针旋转角度α,再朝其面对的方向沿直线行走距离s,现机器人在直角坐标系的坐标原点,且面对x轴正方向.(1)若给机器人下了一个指令[4,60°],则机器人应移动到点______;(2)请你给机器人下一个指令_________,使其移动到点(-5,5).26.(10分)解方程(1)(2)x(3-2x)=4x-6
参考答案一、选择题(每小题3分,共30分)1、C【解析】
观察图象可知,该函数图象表示的是路程与时间的函数关系,依据图象中的数据进行计算即可。【详解】A.轮船的速度为1608=20B.轮船比快艇先出发2小时,故本选项正确;C.快艇到达乙港用了6-2=4小时,故本选项错误;D.快艇的速度为1604=40故选:C.【点睛】本题考查了一次函数图象的运用、行程问题的数量关系的运用,解题时分析函数图象提供的信息是关键。2、A【解析】
根据正方形的判定定理即可求解.【详解】A∵,∴四边形ABCD为矩形,由,所以矩形ABCD为正方形,B.,四边形ABCD为菱形;C.,,,四边形ABCD为菱形;D.,,不能判定四边形ABCD为正方形,故选A.【点睛】此题主要考查正方形的判定,解题的关键是熟知正方形的判定定理.3、B【解析】
用、分别代替原式中的、,再根据分式的基本性质进行化简,观察分式的变化即可.【详解】根据题意,得新的分式为.故选:.【点睛】此题考查了分式的基本性质.4、B【解析】试题解析:根据题意当x>1时,若y1>y1.故选B.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=ax+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.5、D【解析】
根据一元二次方程的定义和△的意义得到k≠1且△>1,即(﹣2)2﹣4×k×1>1,然后解不等式即可得到k的取值范围.【详解】∵关于x的一元二次方程kx2﹣2x+1=1有两个不相等的实数根,∴k≠1且△>1,即(﹣2)2﹣4×k×1>1,解得k<1且k≠1.∴k的取值范围为k<1且k≠1.故选D.【点睛】本题考查了一元二次方程ax2+bx+c=1(a≠1)的根的判别式△=b2﹣4ac:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.6、B【解析】
利用不等式基本性质变形得到结果,即可作出判断.【详解】解:由可得:,故A变形正确;,故B变形错误;,故C变形正确;,故D变形正确.故选:B.【点睛】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.7、C【解析】
A.根据图象可得,乙前4秒行驶的路程为12×4=48米,正确;B.根据图象得:在0到8秒内甲的速度每秒增加4米秒/,正确;C.根据图象可得两车到第3秒时行驶的路程不相等,故本选项错误;D.在4至8秒内甲的速度都大于乙的速度,正确;故选C.8、B【解析】
根据一元二次方程的解的定义把x=0代入方程得到关于a的一元二次方程,然后解此方程即可【详解】把x=0代入方程得,解得a=±1.∵原方程是一元二次方程,所以
,所以,故故答案为B【点睛】本题考查了一元二次方程的解的定义:使一元二次方程左右两边成立的未知数的值叫一元二次方程的解.9、A【解析】
根据最简二次根式的定义判断即可.【详解】A.是最简二次公式,故本选项正确;B.=不是最简二次根式,故本选项错误;C.=不是最简二次根式,故本选项错误;D.=不是最简二次根式,故本选项错误.故选A.【点睛】本题考查了最简二次根式,掌握最简二次根式的定义是解题的关键.10、C【解析】
(1)把A(4,a)代入,求得A为(4,2),然后代入求得k=8;(2)联立方程,解方程组即可求得B(-4,-2);
(3)根据同底等高的三角形相等,得出S△ABC=S△ABF;
(4)根据S△ABF=S△AOF+S△BOF列出,解得。【详解】解:(1)直线经过点,,,点在双曲线上,,故正确;(2)解得或,点的坐标是,故正确;(3)将直线向上平移个单位,交双曲线于点,交轴于点,,和是同底等高,,故错误;(4),,解得,故正确;故选:.【点睛】本题考查了反比例函数和一次函数的交点,待定系数法求反比例函数的解析式,三角形的面积等,求得交点坐标是解题的关键.二、填空题(每小题3分,共24分)11、1【解析】分析:由于AF∥BC,从而易证△AEF≌△DEC(AAS),所以AF=CD,从而可证四边形AFBD是平行四边形,所以S四边形AFBD=2S△ABD,又因为BD=DC,所以S△ABC=2S△ABD,所以S四边形AFBD=S△ABC,从而求出答案.详解:∵AF∥BC,∴∠AFC=∠FCD,在△AEF与△DEC中,∴△AEF≌△DEC(AAS).∴AF=DC,∵BD=DC,∴AF=BD,∴四边形AFBD是平行四边形,∴S四边形AFBD=2S△ABD,又∵BD=DC,∴S△ABC=2S△ABD,∴S四边形AFBD=S△ABC,∵∠BAC=90°,AB=4,AC=6,∴S△ABC=AB•AC=×4×6=1,∴S四边形AFBD=1.故答案为1点睛:本题考查平行四边形的性质与判定,涉及全等三角形的判定与性质,平行四边形的判定与性质,勾股定理等知识,综合程度较高.12、【解析】
连结OA,如图,利用三角形面积公式得到S△OAB=S△ABC=4,再根据反比例函数的比例系数k的几何意义得到|k|=4,然后去绝对值即可得到满足条件的k的值.【详解】解:连结OA,如图∵AB⊥y轴,∴OC∥AB,∴S△OAB=S△ABC=4,而S△OAB=|k|,∴|k|=4,∵k<0,∴k=﹣8故答案为﹣8【点睛】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.13、7,1【解析】
由题意知,,解得x=7,这组数据中7,1各出现两次,出现次数最多,故众数是7,1.14、xn+1-1【解析】观察其右边的结果:第一个是x2-1;第二个是x3-1;…依此类推,则第n个的结果即可求得.(x-1)(xn+xn-1+…x+1)=xn+1-1.15、北偏西25°方向距离为300m【解析】
根据题意作出图形,即可得到大刚家相对于小亮家的位置.【详解】如图,根据题意得∠ACD=35°,∠ABE=85°,AC=AB=300m由图可知∠CBE=∠BCD,∵AB=AC,∴∠ABC=∠ACB,即∠ABE-∠CBE=∠ACD+∠BCD,∴85°-∠CBE=35°+∠CBE,∴∠CBE=25°,∴∠ABC=∠ACB=60°,∴△ABC为等边三角形,则BC=300m,∴大刚家相对于小亮家的位置是北偏西25°方向距离为300m故填:北偏西25°方向距离为300m.【点睛】此题主要考查方位角的判断,解题的关键是根据题意作出图形进行求解.16、1【解析】
根据直角三角形的性质及三角形的中位线即可求解.【详解】解:∵∠C=90°,∠A=30°,∴AB=1BC=4,∵D,E分别是AC,BC的中点,∴DE=AB=1,故答案为:1.【点睛】此题主要考查三角形的中位线,解题的关键是熟知含30°的直角三角形的性质.17、2【解析】
过点D作DE⊥AB于点E,DF⊥BC于点F,首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形.然后依据勾股定理求得OB的长,从而可得到BD的长.【详解】如图,过点D作DE⊥AB于点E,DF⊥BC于点F,连接AC,DB交于点O,则DE=DF,由题意得:AB∥CD,BC∥AD,∴四边形ABCD是平行四边形∵S▱ABCD=BC•DF=AB•DE.又∵DE=DF.∴BC=AB,∴四边形ABCD是菱形;∴OB=OD=2,OA=OC,AC⊥BD.∴∴AC=2AO=2故答案为:2【点睛】本题考查了菱形的判定、解直角三角形以及四边形的面积,证得四边形为菱形是解题的关键.18、20或22【解析】
根据题意矩形的长为7,宽为3或4,因此计算矩形的周长即可.【详解】根据题意可得矩形的长为7当形成的直角等腰三角形的直角边为3时,则矩形的宽为3当形成的直角等腰三角形的直角边为4时,则矩形的宽为4矩形的宽为3或4周长为或故答案为20或22【点睛】本题主要考查等腰直角三角形的性质,关键在于确定宽的长.三、解答题(共66分)19、(1)甲每小时加工50个零件,则乙每小时加工40个零件;(2)2小时.【解析】
(1)主要利用甲加工150个零件所用的时间与乙加工120个零件所用的时间相等,建立等式关系,即可求解,(2)乙最多可以耽搁多长时间,这是一个不等式,把乙的完成的工作量+甲完成的工作量≥1000,【详解】解:(1)设甲每小时加工x个零件,则乙每小时加工(x﹣10)个零件,根据题意,得:=,解得:x=50,经检验x=50是分式方程的解,答:甲每小时加工50个零件,则乙每小时加工40个零件;(2)设乙耽搁的时间为x小时,根据题意,得:50x+(50+40)(12﹣x)≥1000,解得:x≤2,答:乙最多可以耽搁2小时.【点睛】本题主要考查分式方程和一元一次不等式的实际应用20、t为2或秒【解析】
由已知以点P,Q,E,D为顶点的四边形是平行四边形有两种情况,(1)当Q运动到E和C之间,(2)当Q运动到E和B之间,根据平行四边形的判定,由AD∥BC,所以当PD=QE时为平行四边形.根据此设运动时间为t,列出关于t的方程求解.【详解】解:由题意可知,AP=t,CQ=2t,CE=BC=8∵AD∥BC,∴当PD=EQ时,以点P,Q,E,D为顶点的四边形是平行四边形.①当2t<8,即t<4时,点Q在C,E之间,如图甲.此时,PD=AD-AP=6-t,EQ=CE-CQ=8-2t,由6-t=8-2t,得t=2;②当8<2t<16且t<6,即4<t<6时,点Q在B,E之间,如图乙.此时,PD=AD-AP=6-t,EQ=CQ-CE=2t-8,由6-t=2t-8,得t=∴当运动时间t为2或秒时,以点P,Q,E,D为顶点的四边形是平行四边形.【点睛】此题主要考查了梯形及平行四边形的性质,关键是由已知明确有两种情况,不能漏解.21、50.【解析】
解:设该厂原来每天加工x个零件,由题意得:,解得x=50,经检验:x=50是原分式方程的解答:该厂原来每天加工50个零件.22、(1)见解析;(2)120°【解析】
(1)根据线段垂直平分线性质得AC=BC,AD=DE,证AC=CD=AD可得;(2)根据等边三角形性质得∠CAD=∠ACD=∠ADC=60°,根据等腰三角形性质得∠ABC=∠BAC=∠ACD=30°,∠EAD=∠DEA=∠ADC=30°,故∠BAE=∠BAC+∠CAD+∠EAD.【详解】证明:(1)∵AB、AE边上的垂直平分线m1、m2交BE分别为点C、D,∴AC=BC,AD=DE,∴∠B=∠BAC,∠E=∠EAD∵BC=CD=DE,∴AC=CD=AD,∴△ACD是等边三角形.(2)∵△ACD是等边三角形,∴∠CAD=∠ACD=∠ADC=60°,∵AC=BC,AD=DE,∴∠ABC=∠BAC=∠ACD=30°,∠EAD=∠DEA=∠ADC=30°∴∠BAE=∠BAC+∠CAD+∠EAD=120°.【点睛】考核知识点:等边三角形的判定和性质.理解等边三角形的判定和性质是关键.23、(1)A(,),B(﹣1,0),C(4,0);(2)存在,=;(3)点D的坐标为(﹣,)或(8,﹣3)或(0,3)或(,).【解析】
(1)将y=x+1与y=﹣x+3联立求得方程组的解可得到点A的坐标,然后将y=0代入函数解析式求得对应的x的值可得到点B、C的横坐标;(2)当OE∥AD时,存在四边形EODA为平行四边形,然后依据平行线分线段成比例定理可得到=;(3)当DB=DC时,点D在BC的垂直平分线上可先求得点D的横坐标;即AC与y轴的交点为F,可求得CF=BC=F,当点D与点F重合或点D与点F关于点C对称时,三角形BCD为等腰三角形,当BD=BC时,设点D的坐标为(x,﹣x+3),依据两点间的距离公式可知:(x+1)2+(﹣x+3)2=25,从而可求得点D的横坐标.【详解】(1)将y=x+1与y=﹣x+3联立得:,解得:x=,y=,∴A(,).把y=0代入y=x+1得:x+1=0,解得x=﹣1,∴B(﹣1,0).把y=0代入y=﹣x+3得:﹣x+3=0,解得:x=4,∴C(4,0).(2)如图,存在点E使EODA为平行四边形.∵EO∥AC,∴==.(3)当点BD=DC时,点D在BC的垂直平分线上,则点D的横坐标为,将x=代入直线AC的解析式得:y=,∴此时点D的坐标为(,).如图所示:FC==5,∴BC=CF,∴当点D与点F
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026安徽合肥市第四十五中学菱湖分校招聘编外教师笔试备考试题及答案解析
- 2026福建泉州晋江国际机场股份有限公司及其权属公司第一批招聘7人笔试参考题库及答案解析
- 2026天津城投集团校园招聘笔试参考题库及答案解析
- 香槟入门培训课件
- 2026广东湛江太平镇中心幼儿园招聘教师2人笔试备考试题及答案解析
- 2026云南临沧市滇西科技师范学院项目制用招聘2人笔试参考题库及答案解析
- 香山红叶课件
- 2026重庆水泵厂有限责任公司招聘11人笔试模拟试题及答案解析
- 2026天津宏达投资控股有限公司及所属企业招聘16人笔试模拟试题及答案解析
- 2026上海浦东发展银行信用卡中心招聘工作人员5人笔试参考题库及答案解析
- 工业区位·脉络贯通-九年级地理中考二轮复习大单元思维建模与迁移
- 26新版八下语文必背古诗文言文21篇
- 2025陕西事业单位d类考试真题及答案
- 2025年中考英语真题完全解读(重庆卷)
- 学前教育创意短片
- 建筑临时设施设计方案
- 污水厂春节复工安全培训课件
- 广州市2025年中考物理试题及答案
- 审贷分离管理办法
- DB32/T 4502-2023企业质量文化建设评价规范
- 特殊教育教师职业发展的路径研究论文
评论
0/150
提交评论