版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省黄石市第七中学高二数学文知识点试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.是的
(
)A.充分非必要条件
B.必要非充分条件C.充要条件
D.既非充分也非必要条件参考答案:B略2.已知数列{an}满足,则该数列前2011项的和S2011等于()A.1341
B.669
C.1340
D.1339参考答案:A3.两灯塔A、B与海洋观察站C的距离都等于akm,灯塔A在C北偏东300,B在C南偏东600,则A、B之间相距:A、akm
B、akm
C、akm
D、2akm参考答案:C略4.数列{an}的通项公式an=,若前n项的和为10,则项数为()A.11
B.99C.120
D.121参考答案:C略5.已知点共面,且若记到中点的距离的最大值为,最小值为,则
A.
B.
C.
D.参考答案:B6.如图,该程序运行后输出的结果为()A.7 B.15 C.31 D.63参考答案:D【考点】程序框图.【专题】阅读型.【分析】赋值框内的循环变量的赋值A=1,符合条件,进行运算,累加变量同时加1替换,判断是否符合条件,符合条件再进入循环,否则算法结束,输出S.【解答】解:因为A=1,s=1判断框内的条件1≤5成立,执行s=2×1+1=3,i=1+1=2;判断框内的条件2≤5成立,执行s=2×3+1=7,i=2+1=3;判断框内的条件3≤5成立,执行s=2×7+1=15,i=3+1=4;判断框内的条件4≤5成立,执行s=2×15+1=31,i=4+1=5;判断框内的条件5≤5成立,执行s=2×31+1=63,i=5+1=6;此时6>5,判断框内的条件不成立,应执行否路径输出63,所以输入的m值应是5.故答案为5.【点评】本题考查了程序框图中的当型循环结构,当型循环是先判断后执行,满足条件进入循环,不满足条件,算法结束.7.一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如下图所示,则该几何体的俯视图为()参考答案:C略8.若,则等于(
)A.2
B.-2
C.
D.
参考答案:C略9.设曲线的参数方程为(为参数),直线的方程为,则曲线与直线交点的个数为(
)
A.0
B.1
C.2
D.3参考答案:C略10.命题“$,使”的否定是(
)
A.$,使>0 B.不存在,使>0C.",使
D.",使>0参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.,则
.参考答案:略12.抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,则p=
.参考答案:2【考点】抛物线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】利用抛物线的顶点到焦点的距离最小,即可得出结论.【解答】解:因为抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,所以=1,所以p=2.故答案为:2.【点评】本题考查抛物线的方程与性质,考查学生的计算能力,比较基础.13.过点向圆C:作两条切线,切点分别为A,B,则过点P,A,C,B四点的圆的方程为
.参考答案:圆的圆心为(1,1),半径为1,由直线与圆相切知,,所以过点四点的圆的直径为,的中点为圆心,即圆心为(0,0)..所以.过点四点的圆的方程为.故答案为:.
14.如果f(a+b)=f(a)·f(b),且f(1)=2,则________.参考答案:略15.已知函数f(x)=x3-12x+8在区间[-3,3]上的最大值与最小值分别为M、m,则M-m=_____
___.参考答案:32略16.椭圆的左.右焦点分别为,焦距为2c,若直线与椭圆的一个交点满足,则该椭圆的离心率等于__________参考答案:略17.下列表述:①综合法是执因导果法;②分析法是间接证法;③分析法是执果索因法;④反证法是直接证法.正确的语句是____.参考答案:①③三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题满分14分)已知函数(1)当时,求函数的极小值;(2)当时,过坐标原点作曲线的切线,设切点为,求实数的值;(3)设定义在上的函数在点处的切线方程为当时,若在内恒成立,则称为函数的“转点”.当时,试问函数是否存在“转点”.若存在,请求出“转点”的横坐标,若不存在,请说明理由.参考答案:(1)当时,,当时,;当时;当时.所以当时,取到极小值.…4分(2),所以切线的斜率整理得,显然是这个方程的解,又因为在上是增函数,所以方程有唯一实数解,故.…8分(3)当时,函数在其图象上一点处的切线方程为,设,则,若,在上单调递减,所以当时,此时;所以在上不存在“转点”.…10分若时,在上单调递减,所以当时,,此时,所以在上不存在“转点”.…12分若时,即在上是增函数,当时,,当时,,即点为“转点”,故函数存在“转点”,且是“转点”的横坐标.…14分19.如图2,在气象站台A的正西方向的B处有一台风中心,该台风中心以每小时的速度沿北偏东的BD方向移动,在距离台风中心内的地方都要受到其影响.⑴台风中心在移动过程中,与气象台A的最短距离是多少?⑵台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?参考答案:解:(1)如图,过A作AE⊥BD于E,由于台风中心在BD上移动,所以AE就是气象台距离台风中心的最短距离.在Rt⊿ABE中,AB=240,∠ABE=30°,∴AE=AB=120.所以台风中心在移动过程中,与气象台A的最短距离是120km.(2)因为台风中心以每小时的速度沿北偏东的BD方向移动,在距离台风中心内的地方都要受到其影响,所以画以A为圆心,为半径的圆与直线BD相交于C,D两点,那么线段CD就是气象台A受到台风影响的路程.在Rt⊿ACE中,AC=130,AE=120,∴CE==50,∵AC=AD,AE⊥CD,∴CE=ED=50,∴CD=100.∴台风影响气象台的时间会持续100÷50=2(小时).略20.已知函数.(1)求的单调递增区间;(2)若函数有两个极值点且恒成立,求实数m的取值范围.参考答案:(1)时,增区间为;时,增区间为;时,增区间为,;(2).【分析】(1)求出,分三种情况讨论的范围,在定义域内,令求得的范围,可得函数增区间;(2)由(1)知,且,,恒成立,可化为恒成立,利用导数求出函数,的最小值即可得结果.【详解】(1)函数的定义域为,,令,,若时,,在恒成立,函数在上单调递增.若,,方程,两根为,,当时,,,,单调递增.当时,,,,,单调递增,,,单调递增.综上,时,函数单调递增区间为,时,函数单调递增区间,时,函数单调递增区间为,.(2)由(1)知,存在两个极值点时,且,,则,,且,.此时恒成立,可化为恒成立,设,,,因为,所以,,所以,故在单调递减,,所以实数的取值范围是.【点睛】本题主要考查利用导数研究函数的单调性、求函数的最值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:①分离参数恒成立(即可)或恒成立(即可);②数形结合(图象在上方即可);③讨论最值或恒成立;④讨论参数,排除不合题意的参数范围,筛选出符合题意的参数范围.21.已知函数(1)求的单调区间;(2)求函数在上的最大值和最小值;参考答案:(1)在上单调递增,在上单调递减.(2)最大值为0,最小值为.【分析】通过求导函数判断函数单调性,进而判断函数在的最值.【详解】(1)的定义域为.对求导得,因函数定义域有,故,由.∴在上单调递增,在上单调递减.(2)由(1)得在上单调递增,在上单调递减,∴在上的最大值为.又,,且,∴在上的最小值为,∴在上的最大值为0,最小值为.【点睛】此题是函数单调性和函数最值的常见题,通常利用导数来处理。22.已知函数f(x)=ax2+blnx在x=1处有极值.(1)求a,b的值;(2)判断函数y=f(x)的单调性并求出单调区间.参考答案:【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(1)函数f(x)=ax2+blnx在x=1处有极值得到f(1)=,f′(1)=0得到a、b即可;(2)找到函数的定义域,在定义域中找到符合条件的驻点来讨论函数的增减性求出单调区间即可.【解答】解:(1)因为函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年新鲜食材长期供应合作合同版B版
- 2024年度门窗半成品行业展会参展与赞助合同3篇
- 2024仓储配送服务合同
- 2024地产开发项目合作建设合同
- 2024年合伙企业退伙清算协议样本一
- 2024年国内自驾游汽车租赁协议(FBM)版B版
- 2024年创意作品买卖协议3篇
- 二零二四年度航空器材采购及维护合同3篇
- 2024年开业庆典现场互动游戏设计服务合同
- 2024年品牌总经销合同3篇
- 皮肤保湿霜化妆品市场发展预测和趋势分析
- 2024安全生产标准化管理体系新旧版本对比版
- 口腔科消毒隔离知识培训
- GB/T 3488.1-2024硬质合金显微组织的金相测定第1部分:金相照片和描述
- 盐城工学院《数据结构》2022-2023学年期末试卷
- 商业综合体停车场管理方案
- 电大本科《西方经济学》期末试题标准题库及答案(试卷号:1026)
- 国开(浙江)2024年秋《中国建筑史(本)》形考作业1-4答案
- 史密斯L1PB26-B1燃气采暖热水炉使用说明书
- 心理健康促进学习通超星期末考试答案章节答案2024年
- 一《寡人之于国也》教学设计【中职专用】高教版2023·基础模块上册
评论
0/150
提交评论