江苏省南京市高淳县淳辉中学高二数学文上学期摸底试题含解析_第1页
江苏省南京市高淳县淳辉中学高二数学文上学期摸底试题含解析_第2页
江苏省南京市高淳县淳辉中学高二数学文上学期摸底试题含解析_第3页
江苏省南京市高淳县淳辉中学高二数学文上学期摸底试题含解析_第4页
江苏省南京市高淳县淳辉中学高二数学文上学期摸底试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省南京市高淳县淳辉中学高二数学文上学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列三句话按“三段论”模式排列顺序正确的是()①y=cosx(x∈R)是三角函数;②三角函数是周期函数;③y=cosx(x∈R)是周期函数.A.①②③ B.②①③ C.②③① D.③②①参考答案:B【考点】F6:演绎推理的基本方法.【分析】根据三段论”的排列模式:“大前提”→“小前提”?“结论”,分析即可得到正确的次序.【解答】解:根据“三段论”:“大前提”→“小前提”?“结论”可知:①y=cosx((x∈R)是三角函数是“小前提”;②三角函数是周期函数是“大前提”;③y=cosx((x∈R)是周期函数是“结论”;故“三段论”模式排列顺序为②①③故选B【点评】本题考查的知识点是演绎推理的基本方法:大前提一定是一个一般性的结论,小前提表示从属关系,结论是特殊性结论.2.双曲线两条渐近线互相垂直,那么它的离心率为

-

)A.

B.

C.

2

D.参考答案:A3.已知两个平面垂直,下列命题

①一个平面内的已知直线必垂直于另一个平面的任意一条直线;

②一个平面内的已知直线必垂直于另一个平面的无数条直线;

③一个平面内的任一条直线必垂直于另一个平面;

④过一个平面内任意一点作交线的垂线,则垂线必垂直于另一个平面.

其中正确的个数是(

A.3

B.2

C.1

D.0参考答案:C略4.已知Sn是等比数列{an}的前n项和,,设Tn=a1?a2?a3?…?an,则使得Tn取最小值时,n的值为()A.3 B.4 C.5 D.6参考答案:C【考点】等比数列的前n项和.【分析】由9S3=S6,解得q=2.若使Tn=a1a2a3…an取得最小值,则an=?2n﹣1<1,由此能求出使Tn取最小值的n值.【解答】解:∵{an}是等比数列,∴an=a1qn﹣1,S3=a1+a1q+a1q2,S6=a1+a1q+a1q2+a1q3+a1q4+a1q5,由9S3=S6,解得q=2.若使Tn=a1a2a3…an取得最小值,则an<1,∵a1=,∴?2n﹣1<1,解得n<6,n∈N*,∴使Tn取最小值的n值为5.故答案为:5.【点评】本题考查使得等比数列的前n项积Tn取最小值时n的值的求法,是中档题,解题时要认真审题,注意等比数列的性质的合理运用.5.若双曲线的中心在原点,离心率,左焦点是,则的渐近线的距离是(

)A.2

B.3

C.4

D.5参考答案:C6.函数y=﹣3x+9的零点个数为()A.0 B.1 C.2 D.3参考答案:C【考点】利用导数研究函数的极值;根的存在性及根的个数判断.【分析】先利用导数判断函数的单调性,然后说明f(x)存在零点,由此即可得到答案.【解答】解:f′(x)=x2﹣2x﹣3=(x+1)(x﹣3),令(x+1)(x﹣3)=0,可得x=﹣1,x=3,函数有两个极值点,并且f(﹣1)=>0,f(3)=9﹣9﹣9+9=0,x∈(﹣∞,﹣1),x∈(3,+∞),f′(x)>0,x∈(﹣1,3),f′(x)<0,x=﹣1函数取得极大值,x=3时,函数取得极小值,所以f(x)的零点个数为2.故选:C.【点评】本题的考点是函数零点,用导函数判断函数单调性,属中档题.7.已知,且,那么等于(

)A.-26

B.-10

C.-18

D.10参考答案:A略8.已知椭圆+y2=1的焦点分别是F1,F2,点M在该椭圆上,如果?=0,那么点M到y轴的距离是()A. B. C. D.1参考答案:B【考点】椭圆的简单性质.【分析】设M(x,y),则椭圆+y2=1…①,,可得x2+y2=3…②,由①②可求解.【解答】解:设M(x,y),则椭圆+y2=1…①,∵椭圆+y2=1的焦点分别是F1,F2,∴F1(﹣,0),F2(,0),,∵∴x2+y2=3…②由①②得x2=,x=±,∴点M到y轴的距离为,故选:B.9.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b?平面α,直线a?平面α,直线b∥平面α,则直线b∥直线a”,结论显然是错误的,导致推理错误的原因是()A.推理形式错导致结论错B.小前提错导致结论错C.大前提错导致结论错D.大前提和小前提都错导致结论错参考答案:C【考点】演绎推理的基本方法.【分析】分析该演绎推理的三段论,即可得出错误的原因是什么.【解答】解:该演绎推理的大前提是:若直线平行于平面,则该直线平行于平面内所有直线;小前提是:已知直线b∥平面α,直线a?平面α;结论是:直线b∥直线a;该结论是错误的,因为大前提是错误的,正确叙述是“若直线平行于平面,过该直线作平面与已知平面相交,则交线与该直线平行”.故选:C10.阅读如图的程序框图,运行相应的程序,则输出的S的值为()A. B. C. D.参考答案:C【考点】EF:程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的S、i的值,当i=5时,满足条件i>4,退出循环,输出S的值即可.【解答】解:模拟执行程序框图,可得i=1,S=0,k=1;k=1,不满足条件i>4,S=1,i=2;k=,不满足条件i>4,S=,i=3;k=,不满足条件i>4,S=,i=4;k=,不满足条件i>4,S=,i=5;k=,满足条件i>4,退出循环,输出S=.故选:C.【点评】本题主要考查了程序框图和算法的应用问题,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11.已知的内角A,B,C所对的边分别为a,b,c,且,则的值为

.参考答案:

12.已知矩形的长,宽,将其沿对角线折起,得到四面体,如图所示,给出下列结论:①四面体体积的最大值为;②四面体外接球的表面积恒为定值;③若分别为棱的中点,则恒有且;

④当二面角为直二面角时,直线所成角的余弦值为;⑤当二面角的大小为时,棱的长为.其中正确的结论有

(请写出所有正确结论的序号).参考答案:②③④13.如图,点为正方体的中心,点为面的中心,点为的中点,则空间四边形是正方体放入各个面上的正投影可能是__________(填出所有可能的序号).参考答案:①②③如图所示,①是在面上的投影;②是在面上的投影;③是在面上的投影;④无法得到.故本题答案为①②③.14.已知椭圆(a>b>0)的右焦点为F,右准线为,离心率e=过顶点A(0,b)作AM,垂足为M,则直线FM的斜率等于

.参考答案:15.当时,不等式恒成立,则实数a的取值范围为

.参考答案:16.若双曲线的两个焦点为F1,F2,P为双曲线上一点,且|PF1|=3|PF2|,则该双曲线离心率的取值范围是.参考答案:1<e≤2【考点】双曲线的简单性质;双曲线的定义.【分析】先根据双曲线定义可知|PF1|﹣|PF2|=2a进而根据|PF1|=3|PF2|,求得a=|PF2|,同时利用三角形中两边之和大于第三边的性质,推断出,|F1F2|<|PF1|+|PF2|,进而求得a和c的不等式关系,分析当p为双曲线顶点时,=2且双曲线离心率大于1,可得最后答案.【解答】解根据双曲线定义可知|PF1|﹣|PF2|=2a,即3|PF2|﹣|PF2|=2a.∴a=|PF2|,|PF1|=3a在△PF1F2中,|F1F2|<|PF1|+|PF2|,2c<4|PF2|,c<2|PF2|=2a,∴<2,当p为双曲线顶点时,=2又∵双曲线e>1,∴1<e≤2故答案为:1<e≤2.17.设正三棱柱(底边为等边三角形的直棱柱)的体积为2,那么其表面积最小时,底面边长为.参考答案:2【考点】LE:棱柱、棱锥、棱台的侧面积和表面积.【分析】设正三棱柱的底面边长为x,高为h,根据体积为2,用x表示h,求出表面积S关于x的函数式,利用均值不等式求函数的最小值,并求取得最小值时的条件,可得答案.【解答】解:设正三棱柱的底面边长为x,高为h,∵体积为2,∴×x2×h=2,∴h=,∴棱柱的表面积S=2××x2+3xh=x2+=x2++≥6,当x3=8时,即x=2时,取“=”.故答案为:2.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设动点到定点的距离比它到轴的距离大1,记点的轨迹为曲线.(1)求点的轨迹方程;(2)设圆过,且圆心在曲线上,是圆在轴上截得的弦,试探究当运动时,弦长是否为定值?为什么?参考答案:(1)依题意知,动点到定点的距离等于到直线的距离,曲线是以原点为顶点,为焦点的抛物线∵∴∴曲线方程是(2)设圆的圆心为,∵圆过,∴圆的方程为令得:

设圆与轴的两交点分别为,方法1:不妨设,由求根公式得,∴又∵点在抛物线上,∴,∴,即=4∴当运动时,弦长为定值4〔方法2:∵,∴又∵点在抛物线上,∴,∴

∴当运动时,弦长为定值419.在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的上顶点到焦点的距离为2,离心率为. (1)求a,b的值, (2)设P是椭圆C长轴上的一个动点,过点P作斜率为1的直线交椭圆于A,B两点,求△OAB面积的最大值. 参考答案:【考点】椭圆的简单性质. 【专题】综合题;方程思想;综合法;圆锥曲线的定义、性质与方程. 【分析】(1)由题意求得a,结合椭圆离心率求得c,再由隐含条件求得b; (2)由(1)求得椭圆方程,设出P的坐标,得到过P的直线l的方程,与椭圆方程联立,利用弦长公式结合根与系数的关系求得弦长,再由点到直线的距离公式求出O到直线l的距离,代入三角形面积公式,利用基本不等式求得最值. 【解答】解:(1)由题设知a=2,e=, ∴c=,故b2=4﹣3=1. 因此,a=2,b=1; (2)由(1)可得,椭圆C的方程为. 设点P(m,0)(﹣2≤m≤2),点A(x1,y1),点B(x2,y2). 若k=1,则直线l的方程为y=x﹣m. 联立直线l与椭圆C的方程, 即.将y消去,化简得x2﹣2mx+m2﹣1=0. 从而有,x1+x2=,x1x2=, 因此,|AB|== ==, 点O到直线l的距离d=, ∴×|AB|×d=×|m|, 因此,(5﹣m2)×m2≤()2=1. 又﹣2≤m≤2,即m2∈[0,4]. 当5﹣m2=m2,即m2=,m=±时,S△OAB取得最大值1. 【点评】本题考查椭圆的简单性质,考查了再由与圆锥曲线位置关系的应用,考查弦长公式的应用,体现了“设而不求”的解题思想方法,是中档题. 20.(本小题满分12分)观察下表:1,2,34,5,6,78,9,10,11,12,13,14,15,……问:(I)此表第n行的各个数之和是多少?(II)2012是第几行的第几个数?(III)是否存在n∈N*,使得第n行起的连续10行的所有数之和为227-213-120?若存在,求出n的值;若不存在,请说明理由.参考答案:∵第n+1行的第1个数是2n,∴第n行的最后一个数是2n-1.(1)2n-1+(2n-1+1)+(2n-1+2)+…+(2n-1)(2)∵210=1024,211=2048,1024<2012<2048,∴2012在第11行,该行第1个数是210=1024,由2012-1024+1=989,知2012是第11行的第989个数.(3)设第n行的所有数之和为an,第n行起连续10行的所有数之和为Sn.则an=3·22n-3-2n-2,an+1=3·22n-1-2n-1,an+2=3·22n+1-2n,…,an+9=3·22n+15-2n+7,∴Sn=3(22n-3+22n-1+…+22n+15)-(2n-2+2n-1+…+2n+7)=-22n-3-2n+8+2n-2,n=5时,S5=227-128-213+8=227-213-120.∴存在n

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论