




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
EnergyStorageTechnologyComparison
-Aknowledgeguidetosimplifyselectionofenergystoragetechnology
JohannaGustavsson
Reference:
http://www.greenenergystorage.eu
BachelorofScienceThesis
KTHSchoolofIndustrialEngineeringandManagementEnergyTechnologyEGI-2016
SE-10044STOCKHOLM
PAGE\*roman
viii
BachelorofScienceThesisEGI-2016EnergyStorageTechnologyComparison
JohannaGustavsson
Approved
Date
Examiner
ViktoriaMartin
Supervisor
SamanNimaliGunasekara
Commissioner
Contactperson
Abstract
Thepurposeofthisstudyhasbeentoincreasetheunderstandingofsomeofthemostcommonlyusedenergystoragetechnologies.Also,theworkaimedtocollectnumericvaluesofanumberofcommonparametersusedtoanalyzeenergystorage.Thesenumericvaluescouldthenbeusedasbasisforafirstevaluationoftheenergystoragetechnologythatisbestsuitedtoagivensituation.
Themethodwasdividedintothreemainphases.ThefirstphasewastogatherinformationonthedifferenttechnologiesandtoassesswhichoftheinformationthatwasrelevanttopresentinatechnicalsurveycalledEnergyStorageTechnologyMapping.Thispartwasdonetoachievethegoalofincreasetheinsightofdifferentenergystoragetechnologies.Thefollowingphasewas,onthebasisofthenumericvaluespresentedinthetechnicalsurvey,todevelopatooltofacilitatethechoiceofenergystoragetechnologiesindifferentsituations.Thefinalphaseconsistedofacasestudythatwasdonetodemonstratethetool’sutilityandevaluateitsperformance.
Withoutcomparingthestudiedtechnologieswithaspecificapplicationinmind,thefollowingwasstatedregardingthefourcategoriesofenergystoragetechnologies:
Electrochemical:highefficiency,shortstorageperiod
Mechanical:largecapacityandpower,highinitialinvestmentcostsandgeographicallylimited
Chemical:verylongstorageperiod,lowefficiency
Thermal:longlifetimeandhighefficiency,variabledependingonthemediumstudied
Fromtheliteraturestudyandtheresultsanumberofconclusionsweredrawn.Amongotherthings,itwaspossibletoconcludethatenvironmental-,social-andethicalaspectsshouldbetakenintoaccountaswellasthegeographical-andgeologicalconditions.Itwasalsopossibletoconcludethatthetechnologiescomparedwerefoundatdifferentstagesintermsofmaturityandcommercialuse,whichwasreflectedintheabilitytofindmoregeneralnumericvaluesrelativetothevalueslinkedtoaspecificapplication.
Sammanfattning
Syftetmeddennastudieharvaritattökaförståelsenförnågraavdevanligasteenergilagringsteknikerna.Utöverdetsyftadearbetettillattsamlainnumeriskavärdenförettantalgemensammaparametrarsomkanansesrelevantaförattanalyseraenergilagring.Dessanumeriskavärdenkundesedananvändassomunderlagvidenförstabedömningavvilkenenergilagringstekniksomärbästlämpadiolikasituationer.
Metodenvaruppdeladitreolikahuvudfaser.DenförstafasenbestodiattsamlaininformationomdeolikateknikernasamtbedömavilkenavinformationensomvarlämpligattpresenteraientekniskkartläggningvidnamnEnergyStorageTechnologyMapping.Dennadelgjordesförattuppnåmåletomökadförståelsefördeolikaenergilagringsteknikerna.Denefterföljandefasenbestodiattutifråndenumeriskavärdenasompresenteratsidentekniskakartläggningentaframettredskapförattunderlättavaletavenergilagringsteknikvidolikasituationer.Densistafasenbestodavenfallstudiesomgjordesförattdemonstreraverktygetanvändbarhetsamtutvärderadessprestanda.
Utanattjämföradestuderadeteknikernamedettspecifiktanvändningsområdeiåtankekundeföljandekonstaterasgällandedefyraundergruppernaavenergilagringstekniker:
Elektrokemiska:högeffektivitet,kortlagringstid
Mekaniska:storkapacitetochkraft,storainvesteringskostnaderochgeografisktbegränsade
Kemiska:mycketlånglagringstid,lågeffektivitet
Termiska:långlivslängdochhögeffektivitet,varierandeberoendepåstuderatmedium
Frånlitteraturstudienochresultatetkundeettantalslutsatserdras.Blandannatvardetmöjligtattdraslutsatsenattmiljö-,sociala-ochetniskaaspekterbörtasibeaktanliksomgeografiska-ochgeologiskaförutsättningar.Detgickocksåattdraslutsatsenattteknikernasomjämfördesbefannssigpåolikastadiervadgällermognadochkommersielltbrukvilketåterspegladesiförmåganattfinnamergenerellanumeriskavärdeniförhållandetillvärdenkoppladetillettspecifiktanvändningsområde.
Listofcontent
Abstract iii
Sammanfattning iv
Listofcontent v
Listoffigures vi
Listoftables vii
Nomenclature viii
Introduction. 1
Background 2
Problemdefinition 2
Purpose 2
Limitations 3
Methodology 3
EnergyStorageTechnologyMapping 4
ElectrochemicalStorage 5
LithiumIonBattery 5
SodiumSulfurBattery 7
LeadAcidBattery 8
RedoxFlowBattery 10
MechanicalStorage 11
CompressedAirEnergyStorage 11
PumpedHydroEnergyStorage 13
ChemicalStorage 15
Hydrogen 15
Methane 17
ThermalStorage 18
SensibleHeatStorage 18
LatentHeatStorage 19
Thermo-ChemicalEnergyStorage 20
TechnologyComparison–Resultsanddiscussion 21
Comparisonofdifferentenergystoragetechnologies 21
Casestudy:energystoragecomparisonatthreedifferentcases 24
Casenr1–Voltagesupport 24
Casenr2-Arbitrage 25
Casenr3–Wasteheatutilization 25
Otheraspectsandoveralldiscussion 26
Conclusionsandfuturework 28
Conclusions 28
Futurework 29
References 30
AppendixA 36
Listoffigures
Figure1:SchematicillustrationofthefourcategoriesandassociatedEST 3
Figure2:Graphicdemonstrationoftheworkflowandpurposeofeachpart 4
Figure3:Figuredemonstratingthetechnologyreadinesslevel(TRL)ofthedifferenttechnologies[16] 5
Figure4:SchematicdiagramdescribingthedesignofaLIB[17] 6
Figure5:SchematicdiagramdescribingthedesignofaSSB[17] 7
Figure6:Leadacidbatterywithsixcells:outputvoltage≈12V[2] 9
Figure7:BasicconceptofaRedoxFlowbattery.Basedon[19] 10
Figure8:Schematicdiagramof(a)diabaticand(b)adiabaticCAESsystem[47].12Figure9:SchematicofPHESwithacombinedturbineandelectricgenerator.
Redrawnbasedon[51] 14
Figure10:Theelectrolysisofwater;showingwherethehydrogenandoxygenareproducedaswellasthesemipermeablediaphragmbetweenthetwohalf-cellsthatallowstheseparationofthetwogases[58] 16
Figure11:Hotwatertankconnectedtoasolarcollector,commonapplicationforSHSsystems.Basedon[68] 18
Listoftables
Table1:NumericvaluesofcriticalparametersforLIB 7
Table2:NumericvaluesofcriticalparametersforSSB 8
Table3:NumericvaluesofcriticalparametersforLAB 9
Table4:NumericvaluesofcriticalparametersforRFB 11
Table5:NumericvaluesofcriticalparametersforCAES 13
Table6:NumericvaluesofcriticalparametersforPHES 15
Table7:Numericvaluesofcriticalparametersforhydrogen 17
Table8:Numericvaluesofcriticalparametersformethane 17
Table9:NumericvaluesofcriticalparametersforSHS 19
Table10:NumericvaluesofcriticalparametersforLHS 20
Table11:NumericvaluesofcriticalparametersforTCES 21
Table12:Energystoragetechnologycomparisontable 22
Table13:Commonapplicationsintheenergysystem,includingsomecharacteristicparameters.Basedon[55] 36
Nomenclature
Abbreviation Denomination
CAES CompressedAirEnergyStorage
CES ChemicalEnergyStorage
ECES ElectrochemicalEnergyStorage
EST EnergyStorageTechnologies
LAB LeadAcidBatteries
LHS LatentHeatStorage
LIB LithiumIonBatteries
MES MechanicalEnergyStorage
PCM PhaseChangeMaterials
PCT PhaseChangeTemperature
PEM Proton-ExchangeMembrane
PHES PumpedHydroEnergyStorage
RFB RedoxFlowBatteries
SHS SensibleHeatStorage
SSB SodiumSulfurBatteries
TCES Thermo-ChemicalEnergyStorage
TES ThermalEnergyStorage
TRL TechnologyReadinessLevel
PAGE
10
Introduction
Beforetheindustrialrevolutionduringthe19thcentury,theneedofenergywasmodestcomparedwithtoday’ssituation.Theenergyneedintheindustrializedworldincreaseinlinewiththetechnologyadvancesmadeduringtheindustrialization.Oneofthemostimportanttechnicalinventionsisthediscoveryofelectricity.Eversinceelectricity,inthe20thcenturybecomeamatterofcourseinmanyindustrializedsocieties;theenergyneedhaveincreasedsignificantly[1].Today,comfortslikehotwater,airconditionerandoutletsprovidedwithelectricityistakenforgranted.Historically,thesourcesconvertingenergyintoelectricity,heatandcoldhavebeenmainlynon-renewable.Fossilfuelssuchasoil,petroleumandnaturalgashavefilledourneedsforalongperiodoftime[1].Productionofheat,coldandelectricityfromthesesourceshavetheabilitytoadapttodemand,hencetheneedofsupplementaryenergystorageislow.However,theseenergysourcesarefiniteandhaveshownnegativeenvironmentalimpact.Apartfromglobalwarming,theincreaseinthedifferentgreenhousegasescontributetooceanacidification,smogpollution,ozonedepletionaswellaschangestoplantgrowthandnutritionlevels[2].
Basedonincreaseddemand,thepriceoffossilfuelshasfirmlyrisenandanumberof“crises”havehadbigeconomicimpact.E.g.thefirstoilcrisisin1973morethandoubledthepriceofoilovernightandledtogreatreactionsworldwide[3].Amongotherthings,Francethenembarkonamajornuclearpowerprogramtoensureitsenergyindependence.Eversince,nuclearpoweraccountedforthebulkoftheelectricityproducedinFrance,correspondingto75%oftheelectricity[4].Asaresultofthedecision,Francehastoday(2016)almostthelowestcostofelectricityinEuropeandishighlyenergyindependent.Also,thecountryhasextremelylowlevelofCO2emissionspercapitafromelectricitygenerationbecauseofthehighproportionofnuclearpower.Nevertheless,nuclearpowerhascausedanumberofseriousaccidentsthathasledtodevastationresultsduetodangerouslyhighconcentrationsofradioactivesubstances[2].NomajoraccidentshaveoccurredinFrancebuttheradionuclidesspreadhasaffectedlargepartsoftheworld,notonlywithintheareawheretheaccidenthappened.
Nuclearaccidentsandglobalwarmingaswellastherisingpriceandlimitedamountoffossilfuelshasincreasedthenumberofdifferentenergysourcesandatthepresenttimetheproportionofrenewableenergysourceshaveincreased[5].Renewableenergysourcessuchassun-andwindpowerarelessharmfultotheenvironmentandinexhaustible.However,theyareunpredictableandmoredifficulttocontrol.Therefore,oneoftoday’slargestchallengesistomatchtheavailableenergywiththeenergydemandintime,placeandquantity[6].Thisappliesnotonlyelectricitybutalsothermalenergyintheformofheatandcold.Forexample,ifitispossibletostoretheenergygeneratedfromthesunduringsunnydaysorsummerseasonstotimeswithlesssunitcanminimizethelossinheatfromproductiontoconsumption.Inthatwayitispossibletousetheresidualheatlateroninsteadofusinge.g.additionalelectricitytogenerateheatfromanelectricalsourceofheatduringtimeswithlesssun.
PresentlythereisagreatnumberofEnergyStorageTechnologies(EST)availableonthemarket,oftendividedintoElectrochemicalEnergyStorage(ECES),MechanicalEnergyStorage(MES),ChemicalEnergyStorage(CES)andThermalEnergyStorage(TES).Allthetechnologieshavecertaindesignandoperationalparametersthatputconstraintstowheneacharesuitabletouse.Allofthetechnologieshavetheiradvantagesanddisadvantagesthereforewhichareidealindifferentsituationsandapplications.Themorematuretechnologiescurrentlyusedarepumpedhydroenergystorage(mechanical),somebatteries
e.g.lead-acid-andsodiumsulfurbatteries(electrochemical)aswellassensibleheatstorage(thermal)[7][8].Eventhoughtheconventionaltechnologiesallarewellknown,thedevelopmentinthefieldisvastandfast.Thiscreatesaneedtoamorein-depthknowledgeofeachtechnologytobeabletofindtheonemostsuitableforeachsituation.
Background
Renewableenergysourcesisahottopicduetoglobalwarming,severalnumbersofnaturaldisastersetc.Inordertooptimizeitsuse,energystoragehavebecomeinterestingandthereisquitealotofongoingresearchinthearea.ResearchandmanyofthepreviousstudiesonlyexamineandcompareESTwithinthesamecategory(electrochemical,mechanicaletc.).Thishasbeendoneinstudiessuchas:[9],[10]and[11].Also,manystudiescomparedifferentESTwithaparticularapplicationinmindorconversely,comparingdifferentapplicationswithaparticularEST.Thisisexemplifiedinfollowingstudies:[12],[13]and[14].However,therearegapsregardingmorecomprehensivecomparisonthatmakesitpossibletoanalyzeandcomparethestoragetechnologiesindependentlyofapplicationsorcategory.Thisprojectisfocusingonabiggerperspectiveandwithinthissectiontheproblemdefinition,thepurpose,thescopeoftheprojectandthelimitationsencounteredispresented.
Problemdefinition
EnergystorageisarelativelynewtopicforresearchandmanyESTareimmatureandnotcommerciallyusedatpresent(2016).ThismakesthelackofknowledgeforseveralnumbersofEST[15].Theoften-limitedknowledgemakesitdifficulttounderstandtheadvantagesanddisadvantagesofdifferenttechnologiesbutalsotodecidewhichstoragetechnologythatismostsuitableforwhatapplication.Currently,thesearethetwomajorproblemswithinthissubject.
Purpose
ThepurposewiththisstudyistoincreaseunderstandingofthemostcommonEST.ItisalsotogatherandpresentinformationandnumericvaluestodevelopatoolforfacilitatingafirstevaluationofthetypeoftheESTthatisthemostsuitableforparticularapplicationsandgeographicallocations.Byfulfillingthesepurposestheresultaimtoanswerthequestion“whichofthepresentedESTaremostsuitableforagivenapplication?”.
Limitations
ThenumberofESTavailabletodayismanyandtobeabletopresentaprofoundanalysissomelimitationshavebeennecessary.Thetechnologiestreatedwithinthisthesisarelimitedtoanumberofeleven.ThenumberofmethodsforfurthercategorizationofESTismany.Inthisstudyoneofthemostwidelyusedmethodhavebeenapplied.Thatmethodisbasedontheformofenergystoredinthesystem[15].Thetechnologiestreatedinthisstudyhavebeendividedintofourcategories.ThesecategoriesandincludingtechnologiesarepresentedinFigure1thataimstoclarifythecategorization.Thechoiceoftechnologiesisbasedonavailabilitybutalsoonthetechnology’spotentialandvariationpossibility.Someoftherathercommontechnologies,e.g.flywheelshavebeenexcludedsincesomeofitsdisadvantagesmakesitusefulinonlyalimitedrangeofapplication.Also,manyofthetechnologiesareavailableindifferentvariantsbutsincethisprojectaimstofacilitatingafirstevaluation,thetechnologiesarelimitedtoitsbasicdesign.ThestudyisnotgeographicallylimitedtoFrancebutithasbeenmadewiththecountry’sconditionsandcurrentlyenergystoragesituationinmind.Meaning,thepurposehasbeentoprovideaknowledgeguideandatoolthatcouldbeusedworldwidebutexamplesanddiscussionhavehadfocusonFrance.
Figure1:SchematicillustrationofthefourcategoriesandassociatedEST.
Methodology
Themethodologycanbedividedintothreemainphases.Initially,informationaboutdifferentESTwereretrievedfromvarioussourcesincludingscientificliteratureandpublicationsbutalsorelevantinformationfoundonwebpagesbelongingtodifferentorganizationsandcompanies.Afterenoughdatawasgathered,thefollowingphasewastocriticallyanalyzethedataobtainedandsortoutrelevantinformationtopresentintheliteraturestudynamedEnergyStorageTechnologyMapping.Themainapproachwastomapalloftheapplicationsand
storagetechnologiesbasedonanumberofimportantparametersthatthetechnologieshadincommon.ThesetwophasesmainpurposewastocollectandpresentrelevantinformationinordertoincreasetheknowledgeofdifferentEST.
Oncethecriticalanalysisandmappingwasdone,theterminativephasebegun.Thisphasewasacomparisonofthetechnologiestreatedintheliteraturestudy.Thiscomparisonwasbasedonthenumericvaluesforeachofthecommonparameters.ThepurposeofthisphasewastopresentsubstrateandatooltofacilitatingafirstevaluationofwhatkindofESTthatwasmostsuitableforagivenapplication.Tofinallydemonstratethetool’sfunctionandbeabletoevaluateitsperformanceasmallcasestudywasdone.Agraphicillustrationoftheworkflowandeachpart’spurposesarepresentedinFigure2.
Figure2:Graphicdemonstrationoftheworkflowandpurposeofeachpart.
EnergyStorageTechnologyMapping
ThispartofthethesisisdesignedonthebasisofthedivisionspresentedinFigure1.Itthereforeconsistsofsections(4.1ElectrochemicalStorage,4.2MechanicalStorage,4.3ChemicalStorageand4.4ThermalStorage)representingthefourcategoriesoftechnologies:ECES,MES,CESandTES.Furthermore,everysectionconsistsoftwotofourdifferentsubsections(4.1.1LithiumIonBattery,4.1.2SodiumSulfurBatteryetc.)dependingofthenumberoftreatedESTineachsection.ThenameandnumberoftechnologiestreatedineachsubsectionisalsoillustratedinFigure1.
WithineachsectionpresentinganESTthetechnology’stechnicalconstructionincludingmajorcomponentsaredescribed.Also,commonlyusedapplicationsatthepresenttime(2016)andthemostcrucialconditionsanddesignandoperationalcriteriaareconsidered.EverysectionpresentinganEST(4.1.1LithiumIonBattery,4.1.2SodiumSulfurBatteryetc.)lastlycontainsatablewithnumericvaluesofcriticaldesignandoperationalparameters,presentedattheendofeachsection.Thispartaimstoprovidein-depthknowledgeofeachEST.Inordertoincreasetheunderstandingofeachandeverytechnology’sreadinesslevel,alreadyatthispoint,Figure3ispresentedbeforethefollowingsubsections.Theratingisbasedontheextenttowhichthetechnologyisappliedandusedindailylife.
Figure3:Figuredemonstratingthetechnologyreadinesslevel(TRL)ofthedifferenttechnologies[16].
ElectrochemicalStorage
ECESisagenericnameforbatteriesbeingusedtostoreenergy.Batteriesareelectrochemicaldeviceswiththeabilitytoreadilyconvertthestoredenergyintoelectricalenergy.Sincetheyareportableandoftenquitesmalltheycanbelocatedanywherewithoutgeographicalconsiderations[16].Batteriescanbeeithernon-rechargeable(primary)orrechargeable(secondary),onlyrechargeablebatteriesareofinterestforlarge-scaleenergystorage[2].Batteriescanalsobeeithersolid-statebatteriesorflowbatteries.ThissectionpresentanumberofECEStechnologies,includingbothflow-andsolidstatebatteries.
LithiumIonBattery
LithiumIonbatteries(LIB),intheirmostcommonform,consistofapositiveelectrode(cathode)oflithiumoxides,anegativeelectrode(anode)ofgraphiteandanelectrolyteofalithiumsaltandorganicsolvent[2].Figure4isintendedtoclarifythetechnicaldesignofthebattery.
Figure4:SchematicdiagramdescribingthedesignofaLIB[17].
Lithiumhaslowdensityandlargestandardelectrodepotentialresultinginbatterieswithlowweightandhighoperatingvoltage[2].FurthermoreLIBhavenomemoryeffecta,lowself-chargeandoneofthebestenergy-to-massratiowhichmakesthemthemainenergystoragedevicesforportableelectronicssuchasmobilephones,TVsandiPads[18].Table1includesnumericvaluesforseveralparametersinordertoenablecomparisonbetweenLIBandotherEST.Thepropertieshaveproventobeadvantageousalsoforelectrictractionofvehicles,powertoolsandstorageofintermittentlyavailablerenewableenergyhenceLIBisincreasinglycommonintheseapplicationareas[17].AlthoughLIBareextensivelyusedinportableelectronicdevicesandarethemainfocusforelectricalvehicleapplications,theyareatpresent(2016)tooexpensiveforlarge-scalegridstorage.However,theresearchisextensiveandintheUnitedStatesthereisanumberoflithium-ion-baseddemonstrationsthathaverecentlybeeninstalledandtested.Thesesystemswouldbecapableofprovidingshort-termpoweroutputstabilizationforwindturbinesbut,comparedwithotheroptionsLIBarestilltoocostlytouseforapplicationinlongertermstorageofwindenergy[19].
FrancehasoneofthestrongesteconomiesinEuropeandmostoftheFrenchcitizenshavetheabilitytoownportableelectronics,includingLIB.Therefore,thenumberofLIBisquiteextensiveinthecountry[20].Furthermore,thenumberofplug-inhybridandelectricalvehiclehasincreaseddramaticallyinFranceoverthelastcoupleofyears[21].Theplug-inhybridcarsoftenuseNickel-metalbatteries(NiMH)butallofthemostboughtelectricalcars,suchasNissanLeafandFordFocusEVuseLIB[22][23].
aNomemoryeffect–thecapacityisnotreducedeventhoughthebatteryisnotfullydischargedbetweenchargecycles.
LIBhasalargeimpactonmetaldepletionandthelithiummining’stoxicityandlocationinnaturalenvironmentcancausesignificantenvironmental-,social-andhealthimpacts.Thereforeitscontinueduseneedstobemonitoredevenifthereisnoimmediateshortageoflithiumatpresent(2016).Although,LIBareconcededlylesstoxicthanmanyotherbatteries,e.g.lead-acidbatteries[24].
Advantages: Disadvantages:
Highefficiency[8] Expensive[25]
Lowweigh,smallbattery[26]
Table1:NumericvaluesofcriticalparametersforLIB
Power
[MW]
Capacity
[MWh]
StoragePeriod
[time]
SpecificEnergy
[kWh/ton]
EnergyDensity
[kWh/m3]
Efficiency
[%]
Lifetime
[#cycles]
PowerCost
[$/kW]
EnergyCost
[$/kWh]
0.001-
0.25-
Day-
75-200
300
85-100
1000-
175-
500-
0.1
25
month
[8]
[30]
[27]
4500
4000
2500
[27]
[28]
[29]
[31]
[16]b
[16]c
SodiumSulfurBattery
SodiumSulfurBatteries(SSB)consistoftwoactivematerials;moltensulfurasthepositiveelectrodeandmoltensodiumasthenegativeelectrode.ThebatteryisoftenreferredtoasNaSbatteryduetothechemicalabbreviationsofitstwomaincomponentssodium(Na)andSulfur(S).Asolidceramic,sodiumalumina,separatestheelectrodesandservesalsoastheelectrolyte[32].ASSBispresentedinFigure5thataimstoclarifythebattery’stechnicaldesign.
Figure5:SchematicdiagramdescribingthedesignofaSSB[17].
Thesematerialshavetheadvantagesoflowdensityandcost.ThespecificenergyofaSSBishigh,thecyclelifetimeislongcomparedtomanyotherbatteriesandthechargeefficiencyishigh[2].BecauseoftheseadvantagesSSBareconsideredanattractivecandidateforlarge-scaleenergystorageapplications[16].Evenso,bothsodiumandsulfurhaveacommoncharacteristicofbeinghighlycorrosive
bFrom2015
cFrom2015
whichmightcausecorrosiveproblems.CombinedwiththefactthattheSSBoperatesatatemperatureofaround300°Cmakesthebatteries,asmentionedmostsuitableforlarge-scaleenergystoragesuchasforthepowergrid[2].NumericvaluesforseveralparametersarepresentedinTable2thataimstoenableacomparisonbetweenSSBandotherEST.
ReunionIslandPegaseProjectisaprojectwhereSSBhavebeenusedtofacilitateloadlevelingandrenewableintegrationattheReunionIsland,aninsularregionofFrancelocatedintheIndianOcean.TheSSBhaveapowerlevelof1MWandcanprovidetheaverageusageof2000households[33].Also,overthelastdecadeSSBhasseenthelargestnumberofdemonstrationsandfieldtestsglobally,e.g.over190sitesinJapan.Although,furtheruptakeappearstohavesloweddownduetorecentsafetyconcerns[19].
Advantages: Disadvantages:
Longlifecycle[8] Highlycorrosivebehavior[8]
Highproductioncost[34]
Highoperatingtemp.[35]
Table2:NumericvaluesofcriticalparametersforSSB
Power
[MW]
Capacity
[MWh]
StoragePeriod
[time]
SpecificEnergy
[kWh/ton]
EnergyDensity
[kWh/m3]
Efficiency
[%]
Lifetime
[#cycles]
PowerCost
[$/kW]
EnergyCost
[$/kWh]
1-50
::300
Day
150[2]
150-
75-90
2500
1000-
300-
[36]
[28]
[37]
250
[8]
[16]
3000
500
[15]
[16]d
[8]e
LeadAcidBattery
LeadAcidBatteries(LAB)wasinventedbytheFrenchphysicistGastonPlantéalreadyin1859andwasthefirstpracticalrechargeablebattery.LABnormallyconsistsofleadoxide(PbO2)cathodesandlead(Pb)anodesimmersedinsulfuricacid(H2SO4),witheachcellconnectedinseries[38].ThetechnicaldesignisillustratedinFigure6includingthemaincomponentsjustmentioned.
dFrom2015
eFrom2015
Figure6:Leadacidbatterywithsixcells:outputvoltage≈12V[2].
Comparingwithothersolidstatebatteries,thedensityisquitelowbutitcanprovidealargecurrentthatisagreatadvantageinmanyapplicationssuchasstartingacar[2].LABiswidelyusedevenwhensurgecurrentfisnotimportantandotherdesignscouldprovidehigherenergydensities.ThisisbecauseLABischeapcomparedtonewertechnologies.ThereforeLABisalsousedforstorageinbackuppowersuppliesaswellasforwheelchairs,golfcars,personnelcarriersandemergencylighting[39].LABemitslead,whichistoxicheavymetalwithsevereimpactsontheglobalbioaccumulation,alsowithpotentialriskstohumanhealth.However,LABcanberecycledseveralhundredtimesandarecurrentlythemostrecycledconsumerproduct.GiventhattheLABisrecycledthesebatteries’disposalisextremelysuccessfulfrombothcost-andenvironmentalperspectives[40].Table3includesnumericvaluesforseveralparametersandaimstoenablecomparisonbetweenLABandotherEST.
Advantages: Disadvantages:
Canprovidehighcurrent[2] Containstoxicsubstance[8]
Maturetechnology[8] Shortlifetime[8]
Highlyrecycled[40]
Table3:NumericvaluesofcriticalparametersforLAB
Power
[MW]
Capacity
[MWh]
StoragePeriod
[time]
SpecificEnergy
[kWh/ton]
EnergyDensity
[kWh/m3]
Efficiency
[%]
Lifetime
[#cycles]
PowerCost
[$/kW]
EnergyCost
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 甲基转移酶样蛋白3对宫颈癌细胞生物学功能的影响
- 2024年漳州市医院招聘笔试真题
- 2024年青海招中国银行股份有限公司招聘笔试真题
- 2024年南阳市唐河县医疗卫生单位招聘招聘笔试真题
- 二零二五年度咖啡厅与艺术展览合作经营协议
- 二零二五年度家教保密协议及家长权益保障
- 二零二五年度特色饮品店连锁加盟合同
- 二零二五年度企业安全生产责任保险补贴协议
- 财务流程图制作
- 二零二五年度合租房租赁押金退还协议
- 2021北京高三期末文言文阅读汇编
- 护理查房-股骨颈骨折护理查房
- 新教科版六年级科学下册教学计划
- 物候期观察记录表(竖向表)
- 《西方文明史》课程教学大纲
- GB/T 4348.2-2014工业用氢氧化钠氯化钠含量的测定汞量法
- GB/T 23265-2009水泥混凝土和砂浆用短切玄武岩纤维
- 《中华人民共和国宪法》知识测试题
- DB31-T 1338-2021 船舶供应服务物料产品分类与编码要求
- 常用法定计量单位及使用规则
- 铁路工程质量管理与质量验收标准培训课件
评论
0/150
提交评论