储能技术 比较_第1页
储能技术 比较_第2页
储能技术 比较_第3页
储能技术 比较_第4页
储能技术 比较_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

EnergyStorageTechnologyComparison

-Aknowledgeguidetosimplifyselectionofenergystoragetechnology

JohannaGustavsson

Reference:

http://www.greenenergystorage.eu

BachelorofScienceThesis

KTHSchoolofIndustrialEngineeringandManagementEnergyTechnologyEGI-2016

SE-10044STOCKHOLM

PAGE\*roman

viii

BachelorofScienceThesisEGI-2016EnergyStorageTechnologyComparison

JohannaGustavsson

Approved

Date

Examiner

ViktoriaMartin

Supervisor

SamanNimaliGunasekara

Commissioner

Contactperson

Abstract

Thepurposeofthisstudyhasbeentoincreasetheunderstandingofsomeofthemostcommonlyusedenergystoragetechnologies.Also,theworkaimedtocollectnumericvaluesofanumberofcommonparametersusedtoanalyzeenergystorage.Thesenumericvaluescouldthenbeusedasbasisforafirstevaluationoftheenergystoragetechnologythatisbestsuitedtoagivensituation.

Themethodwasdividedintothreemainphases.ThefirstphasewastogatherinformationonthedifferenttechnologiesandtoassesswhichoftheinformationthatwasrelevanttopresentinatechnicalsurveycalledEnergyStorageTechnologyMapping.Thispartwasdonetoachievethegoalofincreasetheinsightofdifferentenergystoragetechnologies.Thefollowingphasewas,onthebasisofthenumericvaluespresentedinthetechnicalsurvey,todevelopatooltofacilitatethechoiceofenergystoragetechnologiesindifferentsituations.Thefinalphaseconsistedofacasestudythatwasdonetodemonstratethetool’sutilityandevaluateitsperformance.

Withoutcomparingthestudiedtechnologieswithaspecificapplicationinmind,thefollowingwasstatedregardingthefourcategoriesofenergystoragetechnologies:

Electrochemical:highefficiency,shortstorageperiod

Mechanical:largecapacityandpower,highinitialinvestmentcostsandgeographicallylimited

Chemical:verylongstorageperiod,lowefficiency

Thermal:longlifetimeandhighefficiency,variabledependingonthemediumstudied

Fromtheliteraturestudyandtheresultsanumberofconclusionsweredrawn.Amongotherthings,itwaspossibletoconcludethatenvironmental-,social-andethicalaspectsshouldbetakenintoaccountaswellasthegeographical-andgeologicalconditions.Itwasalsopossibletoconcludethatthetechnologiescomparedwerefoundatdifferentstagesintermsofmaturityandcommercialuse,whichwasreflectedintheabilitytofindmoregeneralnumericvaluesrelativetothevalueslinkedtoaspecificapplication.

Sammanfattning

Syftetmeddennastudieharvaritattökaförståelsenförnågraavdevanligasteenergilagringsteknikerna.Utöverdetsyftadearbetettillattsamlainnumeriskavärdenförettantalgemensammaparametrarsomkanansesrelevantaförattanalyseraenergilagring.Dessanumeriskavärdenkundesedananvändassomunderlagvidenförstabedömningavvilkenenergilagringstekniksomärbästlämpadiolikasituationer.

Metodenvaruppdeladitreolikahuvudfaser.DenförstafasenbestodiattsamlaininformationomdeolikateknikernasamtbedömavilkenavinformationensomvarlämpligattpresenteraientekniskkartläggningvidnamnEnergyStorageTechnologyMapping.Dennadelgjordesförattuppnåmåletomökadförståelsefördeolikaenergilagringsteknikerna.Denefterföljandefasenbestodiattutifråndenumeriskavärdenasompresenteratsidentekniskakartläggningentaframettredskapförattunderlättavaletavenergilagringsteknikvidolikasituationer.Densistafasenbestodavenfallstudiesomgjordesförattdemonstreraverktygetanvändbarhetsamtutvärderadessprestanda.

Utanattjämföradestuderadeteknikernamedettspecifiktanvändningsområdeiåtankekundeföljandekonstaterasgällandedefyraundergruppernaavenergilagringstekniker:

Elektrokemiska:högeffektivitet,kortlagringstid

Mekaniska:storkapacitetochkraft,storainvesteringskostnaderochgeografisktbegränsade

Kemiska:mycketlånglagringstid,lågeffektivitet

Termiska:långlivslängdochhögeffektivitet,varierandeberoendepåstuderatmedium

Frånlitteraturstudienochresultatetkundeettantalslutsatserdras.Blandannatvardetmöjligtattdraslutsatsenattmiljö-,sociala-ochetniskaaspekterbörtasibeaktanliksomgeografiska-ochgeologiskaförutsättningar.Detgickocksåattdraslutsatsenattteknikernasomjämfördesbefannssigpåolikastadiervadgällermognadochkommersielltbrukvilketåterspegladesiförmåganattfinnamergenerellanumeriskavärdeniförhållandetillvärdenkoppladetillettspecifiktanvändningsområde.

Listofcontent

Abstract iii

Sammanfattning iv

Listofcontent v

Listoffigures vi

Listoftables vii

Nomenclature viii

Introduction. 1

Background 2

Problemdefinition 2

Purpose 2

Limitations 3

Methodology 3

EnergyStorageTechnologyMapping 4

ElectrochemicalStorage 5

LithiumIonBattery 5

SodiumSulfurBattery 7

LeadAcidBattery 8

RedoxFlowBattery 10

MechanicalStorage 11

CompressedAirEnergyStorage 11

PumpedHydroEnergyStorage 13

ChemicalStorage 15

Hydrogen 15

Methane 17

ThermalStorage 18

SensibleHeatStorage 18

LatentHeatStorage 19

Thermo-ChemicalEnergyStorage 20

TechnologyComparison–Resultsanddiscussion 21

Comparisonofdifferentenergystoragetechnologies 21

Casestudy:energystoragecomparisonatthreedifferentcases 24

Casenr1–Voltagesupport 24

Casenr2-Arbitrage 25

Casenr3–Wasteheatutilization 25

Otheraspectsandoveralldiscussion 26

Conclusionsandfuturework 28

Conclusions 28

Futurework 29

References 30

AppendixA 36

Listoffigures

Figure1:SchematicillustrationofthefourcategoriesandassociatedEST 3

Figure2:Graphicdemonstrationoftheworkflowandpurposeofeachpart 4

Figure3:Figuredemonstratingthetechnologyreadinesslevel(TRL)ofthedifferenttechnologies[16] 5

Figure4:SchematicdiagramdescribingthedesignofaLIB[17] 6

Figure5:SchematicdiagramdescribingthedesignofaSSB[17] 7

Figure6:Leadacidbatterywithsixcells:outputvoltage≈12V[2] 9

Figure7:BasicconceptofaRedoxFlowbattery.Basedon[19] 10

Figure8:Schematicdiagramof(a)diabaticand(b)adiabaticCAESsystem[47].12Figure9:SchematicofPHESwithacombinedturbineandelectricgenerator.

Redrawnbasedon[51] 14

Figure10:Theelectrolysisofwater;showingwherethehydrogenandoxygenareproducedaswellasthesemipermeablediaphragmbetweenthetwohalf-cellsthatallowstheseparationofthetwogases[58] 16

Figure11:Hotwatertankconnectedtoasolarcollector,commonapplicationforSHSsystems.Basedon[68] 18

Listoftables

Table1:NumericvaluesofcriticalparametersforLIB 7

Table2:NumericvaluesofcriticalparametersforSSB 8

Table3:NumericvaluesofcriticalparametersforLAB 9

Table4:NumericvaluesofcriticalparametersforRFB 11

Table5:NumericvaluesofcriticalparametersforCAES 13

Table6:NumericvaluesofcriticalparametersforPHES 15

Table7:Numericvaluesofcriticalparametersforhydrogen 17

Table8:Numericvaluesofcriticalparametersformethane 17

Table9:NumericvaluesofcriticalparametersforSHS 19

Table10:NumericvaluesofcriticalparametersforLHS 20

Table11:NumericvaluesofcriticalparametersforTCES 21

Table12:Energystoragetechnologycomparisontable 22

Table13:Commonapplicationsintheenergysystem,includingsomecharacteristicparameters.Basedon[55] 36

Nomenclature

Abbreviation Denomination

CAES CompressedAirEnergyStorage

CES ChemicalEnergyStorage

ECES ElectrochemicalEnergyStorage

EST EnergyStorageTechnologies

LAB LeadAcidBatteries

LHS LatentHeatStorage

LIB LithiumIonBatteries

MES MechanicalEnergyStorage

PCM PhaseChangeMaterials

PCT PhaseChangeTemperature

PEM Proton-ExchangeMembrane

PHES PumpedHydroEnergyStorage

RFB RedoxFlowBatteries

SHS SensibleHeatStorage

SSB SodiumSulfurBatteries

TCES Thermo-ChemicalEnergyStorage

TES ThermalEnergyStorage

TRL TechnologyReadinessLevel

PAGE

10

Introduction

Beforetheindustrialrevolutionduringthe19thcentury,theneedofenergywasmodestcomparedwithtoday’ssituation.Theenergyneedintheindustrializedworldincreaseinlinewiththetechnologyadvancesmadeduringtheindustrialization.Oneofthemostimportanttechnicalinventionsisthediscoveryofelectricity.Eversinceelectricity,inthe20thcenturybecomeamatterofcourseinmanyindustrializedsocieties;theenergyneedhaveincreasedsignificantly[1].Today,comfortslikehotwater,airconditionerandoutletsprovidedwithelectricityistakenforgranted.Historically,thesourcesconvertingenergyintoelectricity,heatandcoldhavebeenmainlynon-renewable.Fossilfuelssuchasoil,petroleumandnaturalgashavefilledourneedsforalongperiodoftime[1].Productionofheat,coldandelectricityfromthesesourceshavetheabilitytoadapttodemand,hencetheneedofsupplementaryenergystorageislow.However,theseenergysourcesarefiniteandhaveshownnegativeenvironmentalimpact.Apartfromglobalwarming,theincreaseinthedifferentgreenhousegasescontributetooceanacidification,smogpollution,ozonedepletionaswellaschangestoplantgrowthandnutritionlevels[2].

Basedonincreaseddemand,thepriceoffossilfuelshasfirmlyrisenandanumberof“crises”havehadbigeconomicimpact.E.g.thefirstoilcrisisin1973morethandoubledthepriceofoilovernightandledtogreatreactionsworldwide[3].Amongotherthings,Francethenembarkonamajornuclearpowerprogramtoensureitsenergyindependence.Eversince,nuclearpoweraccountedforthebulkoftheelectricityproducedinFrance,correspondingto75%oftheelectricity[4].Asaresultofthedecision,Francehastoday(2016)almostthelowestcostofelectricityinEuropeandishighlyenergyindependent.Also,thecountryhasextremelylowlevelofCO2emissionspercapitafromelectricitygenerationbecauseofthehighproportionofnuclearpower.Nevertheless,nuclearpowerhascausedanumberofseriousaccidentsthathasledtodevastationresultsduetodangerouslyhighconcentrationsofradioactivesubstances[2].NomajoraccidentshaveoccurredinFrancebuttheradionuclidesspreadhasaffectedlargepartsoftheworld,notonlywithintheareawheretheaccidenthappened.

Nuclearaccidentsandglobalwarmingaswellastherisingpriceandlimitedamountoffossilfuelshasincreasedthenumberofdifferentenergysourcesandatthepresenttimetheproportionofrenewableenergysourceshaveincreased[5].Renewableenergysourcessuchassun-andwindpowerarelessharmfultotheenvironmentandinexhaustible.However,theyareunpredictableandmoredifficulttocontrol.Therefore,oneoftoday’slargestchallengesistomatchtheavailableenergywiththeenergydemandintime,placeandquantity[6].Thisappliesnotonlyelectricitybutalsothermalenergyintheformofheatandcold.Forexample,ifitispossibletostoretheenergygeneratedfromthesunduringsunnydaysorsummerseasonstotimeswithlesssunitcanminimizethelossinheatfromproductiontoconsumption.Inthatwayitispossibletousetheresidualheatlateroninsteadofusinge.g.additionalelectricitytogenerateheatfromanelectricalsourceofheatduringtimeswithlesssun.

PresentlythereisagreatnumberofEnergyStorageTechnologies(EST)availableonthemarket,oftendividedintoElectrochemicalEnergyStorage(ECES),MechanicalEnergyStorage(MES),ChemicalEnergyStorage(CES)andThermalEnergyStorage(TES).Allthetechnologieshavecertaindesignandoperationalparametersthatputconstraintstowheneacharesuitabletouse.Allofthetechnologieshavetheiradvantagesanddisadvantagesthereforewhichareidealindifferentsituationsandapplications.Themorematuretechnologiescurrentlyusedarepumpedhydroenergystorage(mechanical),somebatteries

e.g.lead-acid-andsodiumsulfurbatteries(electrochemical)aswellassensibleheatstorage(thermal)[7][8].Eventhoughtheconventionaltechnologiesallarewellknown,thedevelopmentinthefieldisvastandfast.Thiscreatesaneedtoamorein-depthknowledgeofeachtechnologytobeabletofindtheonemostsuitableforeachsituation.

Background

Renewableenergysourcesisahottopicduetoglobalwarming,severalnumbersofnaturaldisastersetc.Inordertooptimizeitsuse,energystoragehavebecomeinterestingandthereisquitealotofongoingresearchinthearea.ResearchandmanyofthepreviousstudiesonlyexamineandcompareESTwithinthesamecategory(electrochemical,mechanicaletc.).Thishasbeendoneinstudiessuchas:[9],[10]and[11].Also,manystudiescomparedifferentESTwithaparticularapplicationinmindorconversely,comparingdifferentapplicationswithaparticularEST.Thisisexemplifiedinfollowingstudies:[12],[13]and[14].However,therearegapsregardingmorecomprehensivecomparisonthatmakesitpossibletoanalyzeandcomparethestoragetechnologiesindependentlyofapplicationsorcategory.Thisprojectisfocusingonabiggerperspectiveandwithinthissectiontheproblemdefinition,thepurpose,thescopeoftheprojectandthelimitationsencounteredispresented.

Problemdefinition

EnergystorageisarelativelynewtopicforresearchandmanyESTareimmatureandnotcommerciallyusedatpresent(2016).ThismakesthelackofknowledgeforseveralnumbersofEST[15].Theoften-limitedknowledgemakesitdifficulttounderstandtheadvantagesanddisadvantagesofdifferenttechnologiesbutalsotodecidewhichstoragetechnologythatismostsuitableforwhatapplication.Currently,thesearethetwomajorproblemswithinthissubject.

Purpose

ThepurposewiththisstudyistoincreaseunderstandingofthemostcommonEST.ItisalsotogatherandpresentinformationandnumericvaluestodevelopatoolforfacilitatingafirstevaluationofthetypeoftheESTthatisthemostsuitableforparticularapplicationsandgeographicallocations.Byfulfillingthesepurposestheresultaimtoanswerthequestion“whichofthepresentedESTaremostsuitableforagivenapplication?”.

Limitations

ThenumberofESTavailabletodayismanyandtobeabletopresentaprofoundanalysissomelimitationshavebeennecessary.Thetechnologiestreatedwithinthisthesisarelimitedtoanumberofeleven.ThenumberofmethodsforfurthercategorizationofESTismany.Inthisstudyoneofthemostwidelyusedmethodhavebeenapplied.Thatmethodisbasedontheformofenergystoredinthesystem[15].Thetechnologiestreatedinthisstudyhavebeendividedintofourcategories.ThesecategoriesandincludingtechnologiesarepresentedinFigure1thataimstoclarifythecategorization.Thechoiceoftechnologiesisbasedonavailabilitybutalsoonthetechnology’spotentialandvariationpossibility.Someoftherathercommontechnologies,e.g.flywheelshavebeenexcludedsincesomeofitsdisadvantagesmakesitusefulinonlyalimitedrangeofapplication.Also,manyofthetechnologiesareavailableindifferentvariantsbutsincethisprojectaimstofacilitatingafirstevaluation,thetechnologiesarelimitedtoitsbasicdesign.ThestudyisnotgeographicallylimitedtoFrancebutithasbeenmadewiththecountry’sconditionsandcurrentlyenergystoragesituationinmind.Meaning,thepurposehasbeentoprovideaknowledgeguideandatoolthatcouldbeusedworldwidebutexamplesanddiscussionhavehadfocusonFrance.

Figure1:SchematicillustrationofthefourcategoriesandassociatedEST.

Methodology

Themethodologycanbedividedintothreemainphases.Initially,informationaboutdifferentESTwereretrievedfromvarioussourcesincludingscientificliteratureandpublicationsbutalsorelevantinformationfoundonwebpagesbelongingtodifferentorganizationsandcompanies.Afterenoughdatawasgathered,thefollowingphasewastocriticallyanalyzethedataobtainedandsortoutrelevantinformationtopresentintheliteraturestudynamedEnergyStorageTechnologyMapping.Themainapproachwastomapalloftheapplicationsand

storagetechnologiesbasedonanumberofimportantparametersthatthetechnologieshadincommon.ThesetwophasesmainpurposewastocollectandpresentrelevantinformationinordertoincreasetheknowledgeofdifferentEST.

Oncethecriticalanalysisandmappingwasdone,theterminativephasebegun.Thisphasewasacomparisonofthetechnologiestreatedintheliteraturestudy.Thiscomparisonwasbasedonthenumericvaluesforeachofthecommonparameters.ThepurposeofthisphasewastopresentsubstrateandatooltofacilitatingafirstevaluationofwhatkindofESTthatwasmostsuitableforagivenapplication.Tofinallydemonstratethetool’sfunctionandbeabletoevaluateitsperformanceasmallcasestudywasdone.Agraphicillustrationoftheworkflowandeachpart’spurposesarepresentedinFigure2.

Figure2:Graphicdemonstrationoftheworkflowandpurposeofeachpart.

EnergyStorageTechnologyMapping

ThispartofthethesisisdesignedonthebasisofthedivisionspresentedinFigure1.Itthereforeconsistsofsections(4.1ElectrochemicalStorage,4.2MechanicalStorage,4.3ChemicalStorageand4.4ThermalStorage)representingthefourcategoriesoftechnologies:ECES,MES,CESandTES.Furthermore,everysectionconsistsoftwotofourdifferentsubsections(4.1.1LithiumIonBattery,4.1.2SodiumSulfurBatteryetc.)dependingofthenumberoftreatedESTineachsection.ThenameandnumberoftechnologiestreatedineachsubsectionisalsoillustratedinFigure1.

WithineachsectionpresentinganESTthetechnology’stechnicalconstructionincludingmajorcomponentsaredescribed.Also,commonlyusedapplicationsatthepresenttime(2016)andthemostcrucialconditionsanddesignandoperationalcriteriaareconsidered.EverysectionpresentinganEST(4.1.1LithiumIonBattery,4.1.2SodiumSulfurBatteryetc.)lastlycontainsatablewithnumericvaluesofcriticaldesignandoperationalparameters,presentedattheendofeachsection.Thispartaimstoprovidein-depthknowledgeofeachEST.Inordertoincreasetheunderstandingofeachandeverytechnology’sreadinesslevel,alreadyatthispoint,Figure3ispresentedbeforethefollowingsubsections.Theratingisbasedontheextenttowhichthetechnologyisappliedandusedindailylife.

Figure3:Figuredemonstratingthetechnologyreadinesslevel(TRL)ofthedifferenttechnologies[16].

ElectrochemicalStorage

ECESisagenericnameforbatteriesbeingusedtostoreenergy.Batteriesareelectrochemicaldeviceswiththeabilitytoreadilyconvertthestoredenergyintoelectricalenergy.Sincetheyareportableandoftenquitesmalltheycanbelocatedanywherewithoutgeographicalconsiderations[16].Batteriescanbeeithernon-rechargeable(primary)orrechargeable(secondary),onlyrechargeablebatteriesareofinterestforlarge-scaleenergystorage[2].Batteriescanalsobeeithersolid-statebatteriesorflowbatteries.ThissectionpresentanumberofECEStechnologies,includingbothflow-andsolidstatebatteries.

LithiumIonBattery

LithiumIonbatteries(LIB),intheirmostcommonform,consistofapositiveelectrode(cathode)oflithiumoxides,anegativeelectrode(anode)ofgraphiteandanelectrolyteofalithiumsaltandorganicsolvent[2].Figure4isintendedtoclarifythetechnicaldesignofthebattery.

Figure4:SchematicdiagramdescribingthedesignofaLIB[17].

Lithiumhaslowdensityandlargestandardelectrodepotentialresultinginbatterieswithlowweightandhighoperatingvoltage[2].FurthermoreLIBhavenomemoryeffecta,lowself-chargeandoneofthebestenergy-to-massratiowhichmakesthemthemainenergystoragedevicesforportableelectronicssuchasmobilephones,TVsandiPads[18].Table1includesnumericvaluesforseveralparametersinordertoenablecomparisonbetweenLIBandotherEST.Thepropertieshaveproventobeadvantageousalsoforelectrictractionofvehicles,powertoolsandstorageofintermittentlyavailablerenewableenergyhenceLIBisincreasinglycommonintheseapplicationareas[17].AlthoughLIBareextensivelyusedinportableelectronicdevicesandarethemainfocusforelectricalvehicleapplications,theyareatpresent(2016)tooexpensiveforlarge-scalegridstorage.However,theresearchisextensiveandintheUnitedStatesthereisanumberoflithium-ion-baseddemonstrationsthathaverecentlybeeninstalledandtested.Thesesystemswouldbecapableofprovidingshort-termpoweroutputstabilizationforwindturbinesbut,comparedwithotheroptionsLIBarestilltoocostlytouseforapplicationinlongertermstorageofwindenergy[19].

FrancehasoneofthestrongesteconomiesinEuropeandmostoftheFrenchcitizenshavetheabilitytoownportableelectronics,includingLIB.Therefore,thenumberofLIBisquiteextensiveinthecountry[20].Furthermore,thenumberofplug-inhybridandelectricalvehiclehasincreaseddramaticallyinFranceoverthelastcoupleofyears[21].Theplug-inhybridcarsoftenuseNickel-metalbatteries(NiMH)butallofthemostboughtelectricalcars,suchasNissanLeafandFordFocusEVuseLIB[22][23].

aNomemoryeffect–thecapacityisnotreducedeventhoughthebatteryisnotfullydischargedbetweenchargecycles.

LIBhasalargeimpactonmetaldepletionandthelithiummining’stoxicityandlocationinnaturalenvironmentcancausesignificantenvironmental-,social-andhealthimpacts.Thereforeitscontinueduseneedstobemonitoredevenifthereisnoimmediateshortageoflithiumatpresent(2016).Although,LIBareconcededlylesstoxicthanmanyotherbatteries,e.g.lead-acidbatteries[24].

Advantages: Disadvantages:

Highefficiency[8] Expensive[25]

Lowweigh,smallbattery[26]

Table1:NumericvaluesofcriticalparametersforLIB

Power

[MW]

Capacity

[MWh]

StoragePeriod

[time]

SpecificEnergy

[kWh/ton]

EnergyDensity

[kWh/m3]

Efficiency

[%]

Lifetime

[#cycles]

PowerCost

[$/kW]

EnergyCost

[$/kWh]

0.001-

0.25-

Day-

75-200

300

85-100

1000-

175-

500-

0.1

25

month

[8]

[30]

[27]

4500

4000

2500

[27]

[28]

[29]

[31]

[16]b

[16]c

SodiumSulfurBattery

SodiumSulfurBatteries(SSB)consistoftwoactivematerials;moltensulfurasthepositiveelectrodeandmoltensodiumasthenegativeelectrode.ThebatteryisoftenreferredtoasNaSbatteryduetothechemicalabbreviationsofitstwomaincomponentssodium(Na)andSulfur(S).Asolidceramic,sodiumalumina,separatestheelectrodesandservesalsoastheelectrolyte[32].ASSBispresentedinFigure5thataimstoclarifythebattery’stechnicaldesign.

Figure5:SchematicdiagramdescribingthedesignofaSSB[17].

Thesematerialshavetheadvantagesoflowdensityandcost.ThespecificenergyofaSSBishigh,thecyclelifetimeislongcomparedtomanyotherbatteriesandthechargeefficiencyishigh[2].BecauseoftheseadvantagesSSBareconsideredanattractivecandidateforlarge-scaleenergystorageapplications[16].Evenso,bothsodiumandsulfurhaveacommoncharacteristicofbeinghighlycorrosive

bFrom2015

cFrom2015

whichmightcausecorrosiveproblems.CombinedwiththefactthattheSSBoperatesatatemperatureofaround300°Cmakesthebatteries,asmentionedmostsuitableforlarge-scaleenergystoragesuchasforthepowergrid[2].NumericvaluesforseveralparametersarepresentedinTable2thataimstoenableacomparisonbetweenSSBandotherEST.

ReunionIslandPegaseProjectisaprojectwhereSSBhavebeenusedtofacilitateloadlevelingandrenewableintegrationattheReunionIsland,aninsularregionofFrancelocatedintheIndianOcean.TheSSBhaveapowerlevelof1MWandcanprovidetheaverageusageof2000households[33].Also,overthelastdecadeSSBhasseenthelargestnumberofdemonstrationsandfieldtestsglobally,e.g.over190sitesinJapan.Although,furtheruptakeappearstohavesloweddownduetorecentsafetyconcerns[19].

Advantages: Disadvantages:

Longlifecycle[8] Highlycorrosivebehavior[8]

Highproductioncost[34]

Highoperatingtemp.[35]

Table2:NumericvaluesofcriticalparametersforSSB

Power

[MW]

Capacity

[MWh]

StoragePeriod

[time]

SpecificEnergy

[kWh/ton]

EnergyDensity

[kWh/m3]

Efficiency

[%]

Lifetime

[#cycles]

PowerCost

[$/kW]

EnergyCost

[$/kWh]

1-50

::300

Day

150[2]

150-

75-90

2500

1000-

300-

[36]

[28]

[37]

250

[8]

[16]

3000

500

[15]

[16]d

[8]e

LeadAcidBattery

LeadAcidBatteries(LAB)wasinventedbytheFrenchphysicistGastonPlantéalreadyin1859andwasthefirstpracticalrechargeablebattery.LABnormallyconsistsofleadoxide(PbO2)cathodesandlead(Pb)anodesimmersedinsulfuricacid(H2SO4),witheachcellconnectedinseries[38].ThetechnicaldesignisillustratedinFigure6includingthemaincomponentsjustmentioned.

dFrom2015

eFrom2015

Figure6:Leadacidbatterywithsixcells:outputvoltage≈12V[2].

Comparingwithothersolidstatebatteries,thedensityisquitelowbutitcanprovidealargecurrentthatisagreatadvantageinmanyapplicationssuchasstartingacar[2].LABiswidelyusedevenwhensurgecurrentfisnotimportantandotherdesignscouldprovidehigherenergydensities.ThisisbecauseLABischeapcomparedtonewertechnologies.ThereforeLABisalsousedforstorageinbackuppowersuppliesaswellasforwheelchairs,golfcars,personnelcarriersandemergencylighting[39].LABemitslead,whichistoxicheavymetalwithsevereimpactsontheglobalbioaccumulation,alsowithpotentialriskstohumanhealth.However,LABcanberecycledseveralhundredtimesandarecurrentlythemostrecycledconsumerproduct.GiventhattheLABisrecycledthesebatteries’disposalisextremelysuccessfulfrombothcost-andenvironmentalperspectives[40].Table3includesnumericvaluesforseveralparametersandaimstoenablecomparisonbetweenLABandotherEST.

Advantages: Disadvantages:

Canprovidehighcurrent[2] Containstoxicsubstance[8]

Maturetechnology[8] Shortlifetime[8]

Highlyrecycled[40]

Table3:NumericvaluesofcriticalparametersforLAB

Power

[MW]

Capacity

[MWh]

StoragePeriod

[time]

SpecificEnergy

[kWh/ton]

EnergyDensity

[kWh/m3]

Efficiency

[%]

Lifetime

[#cycles]

PowerCost

[$/kW]

EnergyCost

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论