




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省乐山市沙湾职业高级中学2022-2023学年高二数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若正实数a,b满足a+b=1,则()A.有最大值4
B.ab有最小值C.有最大值
D.a2+b2有最小值参考答案:C2.设函数f(x)=cos(x+φ)(0<φ<π),若f(x)+f′(x)为奇函数,则φ=(
)A.
B.
C.
D.参考答案:D3.下列命题中的假命题是(
)(A)
(B)
(C)
(D)参考答案:A4.命题“?x∈R,x3﹣3x>0”的否定为()A.?x∈R,x3﹣3x≤0 B.?x∈R,x3﹣3x<0 C.?x∈R,x3﹣3x≤0 D.?x∈R,x3﹣3x>0参考答案:C【考点】命题的否定.【分析】根据全称命题的否定是特称命题进行求解即可.【解答】解:命题是全称命题,则命题的否定是特称命题,即?x∈R,x3﹣3x≤0,故选:C5.已知双曲线与抛物线y2=8x有一个公共的焦点F,且两曲线的一个交点为P,若|PF|=5,则双曲线的离心率为()A.2 B.2 C. D.参考答案:A【考点】圆锥曲线的共同特征.【专题】计算题.【分析】根据抛物线和双曲线有相同的焦点求得p和c的关系,根据抛物线的定义可以求出P的坐标,代入双曲线方程与p=2c,b2=c2﹣a2,联立求得a和c的关系式,然后求得离心率e.【解答】解:∵抛物线y2=8x的焦点坐标F(2,0),p=4,∵抛物线的焦点和双曲线的焦点相同,∴p=2c,c=2,∵设P(m,n),由抛物线定义知:|PF|=m+=m+2=5,∴m=3.∴P点的坐标为(3,)∴|解得:,c=2则双曲线的离心率为2,故答案为:2.【点评】本题主要考查了双曲线,抛物线的简单性质.考查了学生综合分析问题和基本的运算能力.解答关键是利用性质列出方程组.6.过双曲线的一个焦点作直线交双曲线于A、B两点,若|AB|=4,则这样的直线有(
)A.4条 B.3条 C.2条 D.1条参考答案:B略7.若某群体中的成员支付的方式只有三种:现金支付;微信支付;信用卡支付。用现金支付的概率为0.45,微信支付的概率为0.15,则信用卡支付的概率为(
)(A)0.3
(B)0.4
(C)0.6 (D)0.7参考答案:B8.一束光线从A(1,0)点处射到y轴上一点B(0,2)后被y轴反射,则反射光线所在直线的方程是()A.x+2y﹣2=0 B.2x﹣y+2=0 C.x﹣2y+2=0 D.2x+y﹣2=0参考答案:B【考点】与直线关于点、直线对称的直线方程.【分析】由反射定律可得点A(﹣1,0)关于y轴的对称点A′(1,0)在反射光线所在的直线上,再根据点b(0,1)也在反射光线所在的直线上,用两点式求得反射光线所在的直线方程.【解答】解:由反射定律可得点A(1,0)关于y轴的对称点A′(﹣1,0)在反射光线所在的直线上,再根据点B(0,2)也在反射光线所在的直线上,用两点式求得反射光线所在的直线方程为=1,即2x﹣y+2=0,故选:B.9.不等式的解集为
(
)A.
B.C.D.参考答案:B10.下列命题中的假命题是()A., B.,C., D.,参考答案:B【分析】对赋值直接排除即可.【详解】对于B选项,当时,满足,但是,与矛盾.故选:B【点睛】本题主要考查了命题真假的判断,考查赋值法及转化思想,属于基础题。二、填空题:本大题共7小题,每小题4分,共28分11.已知△ABC的内角A,B,C的对边分别为a,b,c,若c=,b=,B=135°,则a=1,S△ABC=
.参考答案:考点:正弦定理;余弦定理.专题:解三角形.分析:由余弦定理列出关系式,将b,c,cosB的值代入求出a的值,利用三角形面积公式求出三角形ABC面积即可.解答: 解:∵△ABC中,c=,b=,B=135°,∴由余弦定理得:b2=a2+c2﹣2accosB,即5=a2+2+2a,解得:a=﹣3(舍去)或a=1,则S△ABC=acsinB=×1××=.故答案为:1;点评:此题考查了余弦定理,以及三角形面积公式,熟练掌握余弦定理是解本题的关键.12.设{an}是由正数组成的等比数列,Sn为其前n项和.已知a2a4=1,S3=7,则S5=________.参考答案:13.点是直线上的动点,点分别是圆和圆上的两个动点,则的最小值为
参考答案:14.函数的定义域和值域均为(0,+∞),的导数为,且,则的范围是______.参考答案:【分析】构造函数,利用的导数判断出在上为增函数,由得.构造函数,利用的导数判断出在上为减函数,由得.综上所述可得的取值范围.【详解】解:根据题意,设则,又由,则,则函数在上为增函数,则,即,变形可得,设则,又由,则,则函数在上为减函数,则,即,变形可得,综合可得:,即的范围是;故答案为:.【点睛】本小题主要考查构造函数法求表达式的取值范围,考查利用导数研究函数的单调性,属于难题.15.已知函数f(x)=x2﹣4x+c只有一个零点,且函数g(x)=x(f(x)+mx﹣5)在(2,3)上不是单调函数,则实数m的取值范围是.参考答案:﹣【考点】利用导数研究函数的单调性;二次函数的性质.【分析】根据题意可得c=4,进而得出g(x)=x(f(x)+mx﹣5)=x2+(m﹣4)x2﹣x,函数在(2,3)上不是单调函数,等价于g'(x)=0在(2,3)上只有一根,利用二次函数的性质求解即可.【解答】解:∵函数f(x)=x2﹣4x+c只有一个零点,∴c=4,∴g(x)=x(f(x)+mx﹣5)=x2+(m﹣4)x2﹣x,∵在(2,3)上不是单调函数,∴g'(x)=0在(2,3)上只有一根,∵g'(x)=3x2+2(m﹣4)x﹣1,g'(0)=﹣1,∴g'(2)<0,g'(3)>0,∴﹣.16.为了抽查某城市汽车尾气排放执行情况,在该城市的主干道上采取抽取车牌末位数字为8的汽车检查,这种抽样方法是
.参考答案:系统抽样17.如图,在三棱锥中,两两垂直,且.设点为底面内一点,定义,其中分别为三棱锥、、的体积.若,且恒成立,则正实数的取值范围是___________.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设函数.
(1)若,求在[1,4]上的最值;
(2)若在定义域内既有极大值又有极小值,求实数的取值范围.参考答案:19.已知直线:,(不同时为0),:.(1)若且,求实数的值;(2)当且时,求直线与之间的距离.参考答案:(1);(2).
试题解析:(1)当时,:,由知,2分
解得;
4分(2)当时,:,当时,有解得,6分此时,的方程为:,的方程为:即,则它们之间的距离为.
8分考点:直线的方程及直线与直线的位置关系等有关知识的综合运用.20.(本题满分14分)已知函数的图象在与轴交点处的切线方程是.1)求函数的解析式;2)若至多有两个零点,求实数的取值范围。参考答案:1);
与轴的交点为(2,0),(2分)则
(4分)
解得
故函数…………(6分)
2)
;………8分(12分)至多有两个零点即与至多有两个交点故
(14分)
21.(本小题12分)在直角坐标系中,以为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为,M、N分别为曲线C与x轴,y轴的交点。(1)写出曲线C的直角坐标方程,并求M、N的极坐标;(2)设MN中点为P,求直线OP的极坐标方程。参考答案:(1)由得∴,即令得,即,∴M的极坐标为令得,即,∴N的极坐标为…………6分(2)由(1)易知,所以直线OP的斜率为直线OP的直角坐标方程为:∴,故∴或∴直线OP极坐标方程为…………12分22.已知数列{an}的各项均为正数,其前n项和为Sn,且满足a1=1,an+1=2.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设数列{bn}满足bn=,设数列{bn}的前n项和为Tn,若?n∈N*,不等式Tn﹣na<0恒成立,求实数a的取值范围.参考答案:【考点】数列的求和;数列递推式.【分析】(Ⅰ)由得,故,可得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024桂林山水职业学院辅导员招聘笔试真题
- 绵阳江油市总医院招聘员额工作人员笔试真题2024
- 智慧乡村导视系统的设计原则与应用实践
- 湘教版劳动实践六年级下册专题4 项目2 任务3《打磨抛光、上油保护》教案
- 2024年青海省乡村振兴局下属事业单位真题
- 2025年事业单位考试公共基础知识考试练习题库100题【答案】
- 项目风险管理合同
- 2025年木材加工、处理机械项目建议书
- 创新教育设计启迪未来思维
- 智能教室中的教育机器人-未来教育的探索
- 脑卒中溶栓护理课件
- 2025年城建技师考试题库及答案
- 2025年中国LTCC技术行业市场现状、前景分析研究报告(智研咨询发布)
- 租赁住房培训课件下载
- 房管员试题资料
- 2025至2030中国扭蛋机行业市场发展现状及商业模式与投融资战略报告
- 2024年苏州昆山国创投资集团有限公司招聘笔试真题
- 商场吸烟区管理制度
- 2025年四川省成都市中考地理真题(原卷版)
- 糖尿病足截肢术后护理
- 广东省东莞市2022-2023学年高二下学期期末物理试题(含答案)
评论
0/150
提交评论