第六章专题强化八动能定理在多过程问题中的应用_第1页
第六章专题强化八动能定理在多过程问题中的应用_第2页
第六章专题强化八动能定理在多过程问题中的应用_第3页
第六章专题强化八动能定理在多过程问题中的应用_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题强化八动能定理在多过程问题中的应用目标要求1.会用动能定理解决多过程、多阶段的问题.2.掌握动能定理在往复运动问题中的应用.题型一动能定理在多过程问题中的应用1.应用动能定理解决多过程问题的两种思路(1)分阶段应用动能定理①若题目需要求某一中间物理量,应分阶段应用动能定理.②物体在多个运动过程中,受到的弹力、摩擦力等力若发生了变化,力在各个过程中做功情况也不同,不宜全过程应用动能定理,可以研究其中一个或几个分过程,结合动能定理,各个击破.(2)全过程(多个过程)应用动能定理当物体运动过程包含几个不同的物理过程,又不需要研究过程的中间状态时,可以把几个运动过程看作一个整体,巧妙运用动能定理来研究,从而避开每个运动过程的具体细节,大大简化运算.2.全过程列式时要注意(1)重力、弹簧弹力做功取决于物体的初、末位置,与路径无关.(2)大小恒定的阻力或摩擦力做功的数值等于力的大小与路程的乘积.例1图中ABCD是一条长轨道,其中AB段是倾角为θ的斜面,CD段是水平的,长为s,BC段是与AB段和CD段都相切的一小段圆弧,其长度可以忽略不计.一质量为m的小滑块在A点由静止释放,沿轨道滑下,最后停在D点,A点和D点的位置如图所示,现用一沿轨道方向的力推滑块,使它缓缓地由D点回到A点,设滑块与轨道间的动摩擦因数为μ,重力加速度为g,则推力对滑块做的功等于()A.mgh B.2mghC.μmg(s+eq\f(h,sinθ)) D.μmg(s+hcosθ)听课记录:______________________________________________________________________例2(2023·湖南郴州市模拟)如图所示,在水平的PQ面上有一小物块(可视为质点),小物块以某速度从P点最远能滑到倾角为θ的斜面QA上的A点(水平面和斜面在Q点通过一极短的圆弧连接).若减小斜面的倾角θ,变为斜面QB(如图中虚线所示),小物块仍以原来的速度从P点出发滑上斜面.已知小物块与水平面和小物块与斜面间的动摩擦因数相同,AB为水平线,AC为竖直线.则()A.小物块恰好能运动到B点B.小物块最远能运动到B点上方的某点C.小物块只能运动到C点D.小物块最远能运动到B、C两点之间的某点听课记录:_______________________________________________________________________________________________________________________________________________________例3(2023·江苏苏州市高三检测)如图所示,某游戏装置固定在水平固定的平台上.由光滑弧形轨道AB、半径R=0.8m的光滑竖直圆轨道BMCND、长为L=4m的粗糙水平直轨道DE平滑连接而成(弧形轨道底端与各轨道间略错开,不影响小球进入水平轨道).小球与水平直轨道DE间的动摩擦因数μ=0.4+0.1x(x为到D端的距离),质量m=1kg的小球从离地高为h的A处由静止释放,已知g=10m/s2.(1)若h=2R,求小球通过圆弧轨道最低点B时对轨道压力的大小;(2)若小球不脱离轨道,求h的取值范围;(3)若在竖直圆轨道上端开一段缺口MCN(C为圆轨道最高点),M、N两点关于OC对称,小球能沿路径BMND运动,缺口所对应的圆心角θ不同则h不同,求h的最小值.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________题型二动能定理在往复运动问题中的应用1.往复运动问题:在有些问题中物体的运动过程具有重复性、往返性,而在这一过程中,描述运动的物理量多数是变化的,而且重复的次数又往往是无限的或者难以确定.2.解题策略:此类问题多涉及滑动摩擦力或其他阻力做功,其做功的特点是与路程有关,运用牛顿运动定律及运动学公式将非常繁琐,甚至无法解出,由于动能定理只涉及物体的初、末状态,所以用动能定理分析这类问题可简化解题过程.例4如图所示,固定斜面的倾角为θ,质量为m的滑块从距挡板P的距离为x0处以初速度v0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于重力沿斜面向下的分力.若滑块每次与挡板相碰均无机械能损失,重力加速度为g,则滑块经过的总路程是()A.eq\f(1,μ)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(v02,2gcosθ)+x0tanθ)) B.eq\f(1,μ)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(v02,2gsinθ)+x0tanθ))C.eq\f(2,μ)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(v02,2gcosθ)+x0tanθ)) D.eq\f(1,μ)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(v02,2gcosθ)+\f(x0,tanθ)))听课记录:_______________________________________________________________________例5(2022·浙江1月选考·20)如图所示,处于竖直平面内的一探究装置,由倾角α=37°的光滑直轨道AB、圆心为O1的半圆形光滑轨道BCD、圆心为O2的半圆形光滑细圆管轨道DEF、倾角也为37°的粗糙直轨道FG组成,B、D和F为轨道间的相切点,弹性板垂直轨道固定在G点(与B点等高),B、O1、D、O2和F点处于同一直线上.已知可视为质点的滑块质量m=0.1kg,轨道BCD和DEF的半径R=0.15m,轨道AB长度lAB=3m,滑块与轨道FG间的动摩擦因数μ=eq\f(7,8),滑块与弹性板作用后,以等大速度弹回,sin37°=0.6,cos37°=0.8.滑块开始时均从轨道AB上某点静止释放.(1)若释放点距B点的长度l=0.7m,求滑块到最低点C时轨道对其支持力FN的大小;(2)设释放点距B点的长度为lx,求滑块第一次经F点时的速度v与lx之间的关系

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论