




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
试卷第1页,共SECTIONPAGES1页2021-2023年全国高考数学典例真题汇编(新高考模式训练)33姓名:___________班级:___________一.单选题1.【2021-全国甲卷(理)】设集合,则()A. B.C. D.2.【2021-北京数学高考真题】已知集合,,则()A. B. C. D.3.【2021-天津卷】已知,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不允分也不必要条件4.【2023-全国数学乙卷(文)高考真题】设O为平面坐标系的坐标原点,在区域内随机取一点A,则直线OA的倾斜角不大于的概率为()A. B. C. D.5.【2022-浙江卷数学高考真题】为了得到函数的图象,只要把函数图象上所有的点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度6.【2021-全国新高II卷】已知函数的定义域为,为偶函数,为奇函数,则()A. B. C. D.7.【2022-全国甲卷数学高考真题】甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为,侧面积分别为和,体积分别为和.若,则()A. B. C. D.8.【2022-全国甲卷数学高考真题】设函数在区间恰有三个极值点、两个零点,则的取值范围是()A. B. C. D.二.多选题9.【2021-全国新高II卷】下列统计量中,能度量样本的离散程度的是()A.样本的标准差 B.样本的中位数C.样本的极差 D.样本的平均数10.【2021-全国新高II卷】已知直线与圆,点,则下列说法正确的是()A.若点A在圆C上,则直线l与圆C相切 B.若点A在圆C内,则直线l与圆C相离C.若点A在圆C外,则直线l与圆C相离 D.若点A在直线l上,则直线l与圆C相切11.【2021-新高考Ⅰ卷】已知点在圆上,点、,则()A.点到直线的距离小于B.点到直线的距离大于C.当最小时,D.当最大时,三.填空题12.【2023-新课标全国Ⅰ卷真题】某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有________种(用数字作答).13.【2021-浙江卷】在中,,M是的中点,,则___________,___________.14.【2022-浙江卷数学高考真题】现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为,则__________,_________.四.解答题15.【2021-全国甲卷(理)】甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品二级品合计甲机床15050200乙机床12080200合计270130400(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:0.0500.0100.001k3.8416.63510.82816.【2022-北京数学高考真题】如图,在三棱柱中,侧面为正方形,平面平面,,M,N分别为,AC的中点.(1)求证:平面;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB与平面BMN所成角的正弦值.条件①:;条件②:.注:如果选择条件①和条件②分别解答,按第一个解答计分.17.【2022-北京数学高考真题】已知椭圆:的一个顶点为,焦距为.(1)求椭圆E的方程;(2)过点作斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与x轴交于点M,N,当时,求k的值.18.【2023-新课标全国Ⅰ卷真题】设等差数列的公差为,且.令,记分别为数列的前项和.(1)若,求的通项公式;(2)若为等差数列,且,求.19.【2023-全国数学甲卷(文)高考真题】已知直线与抛物线交于两点,.(1)求;(2)设为的焦点,为上两点,且,求面积的最小值.答案第1页,共SECTIONPAGES1页2021-2023年全国高考数学典例真题汇编(新高考模式训练)33【参考答案】1.答案:B解析:因为,所以,故选:B.【点睛】本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求解.2.答案:B解析:由题意可得:,即.故选:B.
3.答案:A解析:由题意,若,则,故充分性成立;若,则或,推不出,故必要性不成立;所以“”是“”的充分不必要条件.故选:A.4.答案:C解析:因为区域表示以圆心,外圆半径,内圆半径的圆环,则直线的倾斜角不大于的部分如阴影所示,在第一象限部分对应的圆心角,结合对称性可得所求概率.故选:C.5.答案:D解析:因为,所以把函数图象上的所有点向右平移个单位长度即可得到函数的图象.故选:D.6.答案:B解析:因为函数为偶函数,则,可得,因为函数为奇函数,则,所以,,所以,,即,故函数是以为周期的周期函数,因为函数为奇函数,则,故,其它三个选项未知.故选:B.7.答案:C解析:解:设母线长为,甲圆锥底面半径为,乙圆锥底面圆半径为,则,所以,又,则,所以,所以甲圆锥的高,乙圆锥的高,所以.故选:C.8.答案:C解析:解:依题意可得,因,所以,要使函数在区间恰有三个极值点、两个零点,又,的图象如下所示:则,解得,即.故选:C.9.答案:AC解析:由标准差的定义可知,标准差考查的是数据的离散程度;由中位数的定义可知,中位数考查的是数据的集中趋势;由极差的定义可知,极差考查的是数据的离散程度;由平均数的定义可知,平均数考查的是数据的集中趋势;故选:AC.10.答案:ABD解析:圆心到直线l的距离,若点在圆C上,则,所以,则直线l与圆C相切,故A正确;若点在圆C内,则,所以,则直线l与圆C相离,故B正确;若点在圆C外,则,所以,则直线l与圆C相交,故C错误;若点在直线l上,则即,所以,直线l与圆C相切,故D正确.故选:ABD.11.答案:ACD解析:圆的圆心为,半径为,直线的方程为,即,圆心到直线的距离为,所以,点到直线的距离的最小值为,最大值为,A选项正确,B选项错误;如下图所示:当最大或最小时,与圆相切,连接、,可知,,,由勾股定理可得,CD选项正确.故选:ACD.【点睛】结论点睛:若直线与半径为圆相离,圆心到直线的距离为,则圆上一点到直线的距离的取值范围是.12.答案:64解析:(1)当从8门课中选修2门,则不同的选课方案共有种;(2)当从8门课中选修3门,①若体育类选修课1门,则不同的选课方案共有种;②若体育类选修课2门,则不同的选课方案共有种;综上所述:不同的选课方案共有种.故答案:64.13.答案:(1).(2).解析:由题意作出图形,如图,在中,由余弦定理得,即,解得(负值舍去),所以,在中,由余弦定理得,所以;在中,由余弦定理得.故答案为:;.14.答案:①.,②.##解析:从写有数字1,2,2,3,4,5,6的7张卡片中任取3张共有种取法,其中所抽取的卡片上的数字的最小值为2的取法有种,所以,由已知可得的取值有1,2,3,4,,,,所以,故答案为:,.
15.答案:(1)75%;60%;(2)能.解析:(1)甲机床生产的产品中的一级品的频率为,乙机床生产的产品中的一级品的频率为.(2),故能有99%的把握认为甲机床的产品与乙机床的产品质量有差异.16.答案:(1)见解析(2)见解析解析:(2)选①②均可证明平面,从而可建立如图所示的空间直角坐标系,利用空间向量可求线面角的正弦值.【小问1详解】取的中点为,连接,由三棱柱可得四边形为平行四边形,而,则,而平面,平面,故平面,而,则,同理可得平面,而平面,故平面平面,而平面,故平面,小问2详解】因为侧面为正方形,故,而平面,平面平面,平面平面,故平面,因为,故平面,因为平面,故,若选①,则,而,,故平面,而平面,故,所以,而,,故平面,故可建立如所示的空间直角坐标系,则,故,设平面的法向量为,则,从而,取,则,设直线与平面所成的角为,则.若选②,因,故平面,而平面,故,而,故,而,,故,所以,故,而,,故平面,故可建立如所示的空间直角坐标系,则,故,设平面的法向量为,则,从而,取,则,设直线与平面所成的角为,则.17.答案:(1)(2)解析:(2)首先表示出直线方程,设、,联立直线与椭圆方程,消元列出韦达定理,由直线、的方程,表示出、,根据得到方程,解得即可;【小问1详解】解:依题意可得,,又,所以,所以椭圆方程为;【小问2详解】解:依题意过点的直线为,设、,不妨令,由,消去整理得,所以,解得,所以,,直线的方程为,令,解得,直线的方程为,令,解得,所以,所以,即即即整理得,解得18.答案:(1)(2)解析:(2)由为等差数列得出或,再由等差数列的性质可得,分类讨论即可得解.【小问1详解】,,解得,,又,,即,解得或(舍去),.【小问2详解】为等差数列,,即,,即,解得或,,,又,由等差数列性质知,,即,,即,解得或(舍去)当时,,解得,与矛盾,无解;当时,,解得.综上,.19.答案:(1)(2)解析:(2)设直线:,利用,找到关系,以及的面积表达式,再结合函数的性质即可求出其最小值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新北师大版数学实验教学计划
- 小学四年级数学竞赛辅导计划
- 小学数学趣味活动教学计划
- 九年级历史教学信息化应用计划
- 2025年高一物理实验室安全管理计划
- PEP小学四年级英语课题研究计划
- 小学合唱活动安全管理计划
- 2025年小学家委会健康促进计划
- 2025年小学学校体育锻炼推广计划
- 小学英语四年级上册教学计划与家长沟通
- 2025年兰州粮油集团有限公司招聘笔试参考题库含答案解析
- GB 21258-2024燃煤发电机组单位产品能源消耗限额
- 电梯运行故障与事故记录表
- 压力容器使用与管理工作标准
- 计算机科学导论练习题库
- 型钢悬挑卸料平台施工安全保证措施
- 中国严重脓毒症脓毒性休克治疗指南(2014)规范与实践
- 设计院管理制度及岗位职责
- 履带式推土机设计
- 公路工程施工监理规范(JTGG10-2006)
- 事业单位同意报考证明
评论
0/150
提交评论