人教版高中数学必修4课后习题答案详解_第1页
人教版高中数学必修4课后习题答案详解_第2页
人教版高中数学必修4课后习题答案详解_第3页
人教版高中数学必修4课后习题答案详解_第4页
人教版高中数学必修4课后习题答案详解_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第页第二章平面对量2.1平面对量的实际背景及基本概念练习(P77)1,略.2,,.这两个向量的长度相等,但它们不等.3,,,,.4,(1)它们的终点相同;(2)它们的终点不同.习题2.1A组(P77)1,(2).3,及相等的向量有:;及相等的向量有:;及相等的向量有:.4,及相等的向量有:;及相等的向量有:;及相等的向量有:5,.6,(1)×;(2)√;(3)√;(4)×.习题2.1B组(P78)1,海拔和高度都不是向量.2,相等的向量共有24对.模为1的向量有18对.其中及同向的共有6对,及反向的也有6对;及同向的共有3对,及反向的也有6对;模为的向量共有4对;模为2的向量有2对2.2平面对量的线性运算练习(P84)1,图略.2,图略.3,(1);(2).4,(1);(2);(3);(4).练习(P87)1,图略.2,,,,,.3,图略.练习(P90)1,图略.2,,.说明:本题可先画一个示意图,依据图形简单得出正确答案.值得留意的是及反向.3,(1);(2);(3);(4).4,(1)共线;(2)共线.5,(1);(2);(3).6,图略.习题2.2A组(P91)1,(1)向东走20km;(2)向东走5km;(3)向东北走km;(4)向西南走km;(5)向西北走km;(6)向东南走km.2,飞机飞行的路程为700km;两次位移的合成是向北偏西53°方向飞行500km.3,解:如右图所示:表示船速,表示河水的流速,以,为邻边作□,则表示船实际航行的速度.在Rt△ABC中,,,所以因为,由计算器得所以,实际航行的速度是EMBEDEquation.DSMT4,船航行的方向及河岸的夹角约为76°.4,(1);(2);(3);(4);(5);(6);(7).5,略6,不肯定构成三角形.说明:结合向量加法的三角形法则,让学生理解,若三个非零向量的和为零向量,且这三个向量不共线时,则表示这三个向量的有向线段肯定能构成三角形.7,略.8,(1)略;(2)当时,9,(1);(2);(3);(4).(第11题)10,,,.(第11题)11,如图所示,,,(第12题)12,,,,,(第12题)13,证明:在中,分别是的中点,(第13题)所以且,(第13题)即;同理,,所以.习题2.2B组(P92)(第1题)1,丙地在甲地的北偏东45°方向,距甲地1400km.(第1题)2,不肯定相等,可以验证在不共线时它们不相等.3,证明:因为,而,,所以.4,(1)四边形为平行四边形,证略(第4题(2))(2)四边形为梯形.(第4题(2))证明:∵,∴且∴四边形为梯形.(3)四边形为菱形.(第4题(3))证明:∵,(第4题(3))∴且∴四边形为平行四边形又(第5题)∴四边形为菱形.(第5题)5,(1)通过作图可以发觉四边形为平行四边形.证明:因为,而所以所以,即∥.因此,四边形为平行四边形.2.3平面对量的基本定理及坐标表示练习(P100)1,(1),;(2),;(3),;(4),.2,,.3,(1),;(2),;(3),;(4),4,∥.证明:,,所以.所以∥.5,(1);(2);(3).6,或7,解:设,由点在线段的延长线上,且,得∴,所以点的坐标为.习题2.3A组(P101)1,(1);(2);(3).说明:解题时可设,利用向量坐标的定义解题.2,3,解法一:,而,.所以点的坐标为.解法二:设,则,由可得,,解得点的坐标为.4,解:,.,所以,点的坐标为;,所以,点的坐标为;,所以,点的坐标为.5,由向量共线得,所以,解得.6,,,,所以及共线.7,,所以点的坐标为;,所以点的坐标为;故习题2.3B组(P101)1,,.当时,,所以;当时,,所以;当时,,所以;当时,,所以.2,(1)因为,,所以,所以,,三点共线;(2)因为,,所以,所以,,三点共线;(3)因为,,所以,所以,,三点共线.3,证明:假设,则由,得.所以是共线向量,及已知是平面内的一组基底冲突,因此假设错误,.同理.综上.4,(1).(2)对于随意向量,都是唯一确定的,所以向量的坐标表示的规定合理.2.4平面对量的数量积练习(P106)1,.2,当时,为钝角三角形;当时,为直角三角形.3,投影分别为,0,.图略练习(P107)1,,,.2,,,,.3,,,,.习题2.4A组(P108)1,,,.2,及的夹角为120°,.3,,.4,证法一:设及的夹角为.(1)当时,等式明显成立;(2)当时,及,及的夹角都为,所以所以;(3)当时,及,及的夹角都为,则所以;综上所述,等式成立.证法二:设,,那么所以;5,(1)直角三角形,为直角.证明:∵,∴,为直角,为直角三角形(2)直角三角形,为直角证明:∵,∴,为直角,为直角三角形(3)直角三角形,为直角证明:∵,∴,为直角,为直角三角形6,.7,.,于是可得,,所以.8,,.9,证明:∵,,∴为顶点的四边形是矩形.10,解:设,则,解得,或.于是或.11,解:设及垂直的单位向量,则,解得或.于是或.习题2.4B组(P108)1,证法一:证法二:设,,.先证由得,即而,所以再证由得,即,因此2,.3,证明:构造向量,.,所以(第4题)4,的值只及弦的长有关,及圆的半径无关.(第4题)证明:取的中点,连接,则,又,而所以5,(1)勾股定理:中,,则证明:∵由,有,于是(2)菱形中,求证:证明:∵,∵四边形为菱形,∴,所以∴,所以(3)长方形中,求证:证明:∵四边形为长方形,所以,所以∴,所以,所以(4)正方形的对角线垂直平分.综合以上(2)(3)的证明即可.2.5平面对量应用举例习题2.5A组(P113)1,解:设,则,由得,即(第2题)代入直线的方程得.所以,点的轨迹方程为.(第2题)2,解:(1)易知,∽,,所以.(2)因为所以,因此三点共线,而且(第4题)同理可知:,所以(第4题)3,解:(1);(2)在方向上的投影为.4,解:设,的合力为,及的夹角为,则,;,及的夹角为150°.习题2.5B组(P113)1,解:设在水平方向的速度大小为,竖直方向的速度的大小为,则,.设在时刻时的上上升度为,抛掷距离为,则所以,最大高度为,最大投掷距离为.2,解:设及的夹角为,合速度为,及的夹角为,行驶距离为.则,.∴.所以当,即船垂直于对岸行驶时所用时间最短.3,(1)解:设,则..将绕点沿顺时针方向旋转到,相当于沿逆时针方向旋转到,于是所以,解得(2)解:设曲线上任一点的坐标为,绕逆时针旋转后,点的坐标为则,即又因为,所以,化简得第二章复习参考题A组(P118)1,(1)√;(2)√;(3)×;(4)×.2,(1);(2);(3);(4);(5);(6).(第4题)3,,(第4题)4,略解:5,(1),;(2),;(3).6,及共线.证明:因为,,所以.所以及共线.7,.8,.9,.10,11,证明:,所以.12,.13,,.14,第二章复习参考题B组(P119)1,(1);(2);(3);(4);(5);(6);(7).2,证明:先证.因为,所以,于是.再证.由于,由可得,于是(第3题)所以.【几何意义是矩形的两条对角线相等】(第3题)3,证明:先证又,所以,所以再证.由得,即所以【几何意义为菱形的对角线相互垂直,如图所示】(第5题)4,,(第5题)而,,所以5,证明:如图所示,,由于,所以,所以所以,同理可得所以,同理可得,,所以为正三角形.(第6题)6,连接.(第6题)由对称性可知,是的中位线,.7,(1)实际前进速度大小为(千米/时),沿及水流方向成60°的方向前进;(2)实际前进速度大小为千米/时,沿及水流方向成的方向前进.8,解:因为,所以,所以同理,,,所以点是的垂心.9,(1);(2)垂直;(3)当时,∥;当时,,夹角的余弦;(4)第三章三角恒等变换3.1两角和及差的正弦,余弦和正切公式练习(P127)1,.2,解:由,得;所以.3,解:由,是第二象限角,得;所以.4,解:由,得;又由,得.所以.练习(P131)1,(1);(2);(3);(4).2,解:由,得;所以.3,解:由,是第三象限角,得;所以.4,解:.5,(1)1;(2);(3)1;(4);(5)原式=;(6)原式=.6,(1)原式=;(2)原式=;(3)原式=;(4)原式=.7,解:由已知得,即,所以.又是第三象限角,于是.因此.练习(P135)1,解:因为,所以又由,得,所以2,解:由,得,所以所以3,解:由且可得,又由,得,所以.4,解:由,得.所以,所以5,(1);(2);(3)原式=;(4)原式=.习题3.1A组(P137)1,(1);(2);(3);(4).2,解:由,得,所以.3,解:由,得,又由,得,所以.4,解:由,是锐角,得因为是锐角,所以,又因为,所以所以5,解:由,得又由,得所以6,(1);(2);(3).7,解:由,得.又由,是第三象限角,得.所以8,解:∵且为的内角当时,,不合题意,舍去9,解:由,得.10,解:∵是的两个实数根.11,解:∵(第12题)12,解:∵(第12题)又∵,∴13,(1);(2);(3);(4);(5);(6);(7);(8);(9);(10).14,解:由,得15,解:由,得16,解:设,且,所以.17,解:,.18,解:EMBEDEquation.DSMT4,即又,所以19,(1);(2);(3);(4).习题3.1B组(P138)1,略.2,解:∵是的方程,即的两个实根由于,所以.3,反应一般的规律的等式是(表述形式不唯一)(证明略)本题是开放型问题,反映一般规律的等式的表述形式还可以是:,其中,等等思索过程要求从角,三角函数种类,式子结构形式三个方面找寻共同特点,从而作出归纳.对相识三角函数式特点有帮忙,证明过程也会促进推理实力,运算实力的提高.4,因为,则即所以3.2简单的三角恒等变换练习(P142)1,略.2,略.3,略.4,(1).最小正周期为,递增区间为,最大值为;(2).最小正周期为,递增区间为,最大值为3;(3).最小正周期为,递增区间为,最大值为2.习题3.2A组(P143)1,(1)略;(2)提示:左式通分后分子分母同乘以2;(3)略;(4)提示:用代替1,用代替;(5)略;(6)提示:用代替;(7)提示:用代替,用代替;(8)略.2,由已知可有……①,……②(1)②×3-①×2可得(2)把(1)所得的两边同除以得留意:这里隐含及①,②之中3,由已知可解得.于是4,由已知可解得,,于是.5,,最小正周期是,递减区间为.习题3.2B组(P143)1,略.2,由于,所以即,得3,设存在锐角使,所以,,又,又因为,所以由此可解得,,所以.经检验,是符合题意的两锐角.(第4题)4,线段的中点的坐标为.过作垂直于轴,交轴于,.(第4题)在中,.在中,,于是有,5,当时,;当时,,此时有;当时,,此时有;由此猜想,当时,6,(1),其中所以,的最大值为5,最小值为﹣5;(2),其中所以,的最大值为,最小值为;第三章复习参考题A组(P146)1,.提示:2,.提示:3,1.4,(1)提示:把公式变形;(2);(3)2;(4).提示:利用(1)的恒等式.5,(1)原式=;(2)原式=(3)原式=(4)原式=6,(1);(2);(3).提示:;(4).7,由已知可求得,,于是.8

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论