版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2课时函数概念的综合应用1精品PPT|实用可编辑第一页,共三十一页。1.掌握简单函数的定义域的求法;(重点)2.会求简单函数的值域;(重点、难点)2精品PPT|实用可编辑第二页,共三十一页。1.构成函数的三要素;2.函数的定义域的概念;3.函数值域的概念;4.函数的对应关系.3精品PPT|实用可编辑第三页,共三十一页。探究点1:
函数定义域的求法4精品PPT|实用可编辑第四页,共三十一页。类型一:f(x)是整式如果f(x)是整式,那么函数的定义域是实数集R.F(x)=2xF(x)=—3x+2F(x)=2x2+x—15精品PPT|实用可编辑第五页,共三十一页。类型二:f(x)是分式类型二:如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合
6精品PPT|实用可编辑第六页,共三十一页。类型三:f(x)根式F(x)=如果f(x)是偶次根式,那么函数的定义域是使根号内的式子不小于0的实数的集合.如果f(x)是奇次根式,那么函数的定义域根号内式子有意义的数的集合7精品PPT|实用可编辑第七页,共三十一页。类型四:f(x)是代数式的0次如果f(x)为代数式的0次,那么函数的定义域是使代数式不等于0的实数的集合.8精品PPT|实用可编辑第八页,共三十一页。类型五:f(x)是组合式如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各部分集合的交集)9精品PPT|实用可编辑第九页,共三十一页。求函数的定义域时常有的几种情况:
①若f(x)是整式,则函数的定义域是:实数集R;②若f(x)是分式,则函数的定义域是:使分母不等于0的实数集;③若f(x)是偶次根式,则函数的定义域是:使根号内的式子大于等于0的实数集.提升总结:10精品PPT|实用可编辑第十页,共三十一页。④若f(x)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合;⑤若f(x)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题.11精品PPT|实用可编辑第十一页,共三十一页。类型六:求抽象函数的定义域抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数12精品PPT|实用可编辑第十二页,共三十一页。类型六:求抽象函数的定义域13精品PPT|实用可编辑第十三页,共三十一页。
类型六:求抽象函数的定义域14精品PPT|实用可编辑第十四页,共三十一页。PPT内容概述第2课时函数概念的综合应用。第2课时函数概念的综合应用。精品PPT|实用可编辑。4.函数的对应关系.。如果f(x)是整式,那么函数的定义域是实数集R.。如果f(x)是分式,那么函数的定义域是使分母不等于。如果f(x)是奇次根式,那么函数的定义域根号内式子有意义的数的集合。如果f(x)是由几个部分的数学式子构成的,那么函数。求函数的定义域时常有的几种情况:。②若f(x)是分式,则函数的定义域是:。③若f(x)是偶次根式,则函数的定义域是:。使根号内的式子大于等于0的实数集.。特别提醒:对于抽象函数的定义域,在同一对应关系f下,括号内整体的取值范围相同.。已知f(2x+3)定义域是[-4,5),。已知函数y=f(2x+1)的定义域为[1,2],。得到的函数的定义域,其解法是:。某种笔记本每个5元,买x个笔记本需要y(元),试求函数解析式并写出自变量的取值范围。解:依题意有:。求实数的取值范围。30第十五页,共三十一页。抽象函数的定义域解:由题意知:特别提醒:对于抽象函数的定义域,在同一对应关系f下,括号内整体的取值范围相同.16精品PPT|实用可编辑第十六页,共三十一页。17精品PPT|实用可编辑第十七页,共三十一页。解:由题意知:18精品PPT|实用可编辑第十八页,共三十一页。练习已知f(2x+3)定义域是[-4,5),
求f(x)的定义域19精品PPT|实用可编辑第十九页,共三十一页。三、已知f(g(x))的定义域求f(h(x))的定义域20精品PPT|实用可编辑第二十页,共三十一页。练习已知函数y=f(2x+1)的定义域为[1,2],求函数y=f(4x-1)的定义域。21精品PPT|实用可编辑第二十一页,共三十一页。求抽象函数的定义域22精品PPT|实用可编辑第二十二页,共三十一页。求由有限个抽象函数经四则运算得到的函数的定义域,其解法是:先求出各个函数的定义域,然后再求交集.23精品PPT|实用可编辑第二十三页,共三十一页。练习24精品PPT|实用可编辑第二十四页,共三十一页。精品PPT·收集整理第二十五页,共三十一页。类型七:考虑f(x)的实际意义如果f(x)实际问题中的自变量取值,需要考虑实际意义。某种笔记本每个5元,买x个笔记本需要y(元),试求函数解析式并写出自变量的取值范围26精品PPT|实用可编辑第二十六页,共三十一页。练习的定义域求函数解:依题意有:解得:函数的定义域为27精品PPT|实用可编辑第二十七页,共三十一页。练习(1)已知函数的定义域为求的定义域;(2)已知函数的定义域为求的定义域.28精品PPT|实用可编辑第二十八页,共三十一页。函数定义域的逆向应用问题例、(1)若函数的定义域为
求实数的取值范围;(2)若函数的定义域为求实数的取值范围.29精品PPT|实用可编辑第二十九页,共三十一页。函数的定义域为例(1)若函数的定义域为,求实数的取值围无解即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年中国注射用阿昔洛韦市场调查研究报告
- 北京物资学院《计算机彩色图像程处理技术》2023-2024学年第一学期期末试卷
- 在施工程以及近年已竣工工程合同履行情况
- 2025至2030年中国香鲜粉行业投资前景及策略咨询研究报告
- 2025至2030年中国轴流式气体过滤器行业投资前景及策略咨询研究报告
- 2025版九级工伤赔偿标准理赔与理赔评估合同2篇
- 小区房屋租赁合同
- 年度销售实习总结五篇
- 网络安全课程设计感想
- 建筑脚手架工程合同
- 建筑工地塔吊智能化发展趋势分析
- 电梯年终工作总结2篇
- 导医接待工作的常见问题与应对策略
- 《客户的分级》课件
- 信息技术与小学语文阅读教学深度融合的策略研究
- 大连市船舶运输与经济发展的市场研究报告
- GB/T 2881-2023工业硅
- DB3302T 1156-2023 水利水务设施基础感知点位设置规范
- 内科医生的医患关系与患者满意度
- 小学生低年级语文阅读能力评价标准及评价办法
- 案例:伊通河中段水环境综合整治工程
评论
0/150
提交评论