河北保定市博野县重点达标名校2024届十校联考最后数学试题含解析_第1页
河北保定市博野县重点达标名校2024届十校联考最后数学试题含解析_第2页
河北保定市博野县重点达标名校2024届十校联考最后数学试题含解析_第3页
河北保定市博野县重点达标名校2024届十校联考最后数学试题含解析_第4页
河北保定市博野县重点达标名校2024届十校联考最后数学试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北保定市博野县重点达标名校2024届十校联考最后数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.若一次函数的图象经过第一、二、四象限,则下列不等式一定成立的是()A. B. C. D.2.如图是一个正方体被截去一角后得到的几何体,从上面看得到的平面图形是()A. B. C. D.3.已知抛物线y=ax2+bx+c与x轴交于(x1,0)、(x2,0)两点,且0<x1<1,1<x2<2与y轴交于(0,-2),下列结论:①2a+b>1;②a+b<2;③3a+b>0;④a<-1,其中正确结论的个数为()A.1个 B.2个 C.3个 D.4个4.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()A.1个 B.2个 C.3个 D.4个5.6的相反数为A.-6 B.6 C. D.6.二次函数y=a(x-4)2-4(a≠0)的图象在2<x<3这一段位于x轴的下方,在6<x<7这一段位于x轴的上方,则a的值为(

)A.1

B.-1

C.2

D.-27.下列计算正确的是()A.a²+a²=a4 B.(-a2)3=a6C.(a+1)2=a2+1 D.8ab2÷(-2ab)=-4b8.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为万千克,根据题意,列方程为A. B.C. D.9.如图,与∠1是内错角的是()A.∠2B.∠3C.∠4D.∠510.已知2是关于x的方程x2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A.10 B.14 C.10或14 D.8或10二、填空题(本大题共6个小题,每小题3分,共18分)11.某广场要做一个由若干盆花组成的形如正六边形的花坛,每条边(包括两个顶点)有n(n>1)盆花,设这个花坛边上的花盆的总数为S,请观察图中的规律:按上规律推断,S与n的关系是________________________________.12.今年“五一”节日期间,我市四个旅游景区共接待游客约303000多人次,这个数据用科学记数法可记为_____.13.如图,sin∠C,长度为2的线段ED在射线CF上滑动,点B在射线CA上,且BC=5,则△BDE周长的最小值为______.14.分解因:=______________________.15.如图,点是反比例函数图像上的两点(点在点左侧),过点作轴于点,交于点,延长交轴于点,已知,,则的值为__________.16.计算:____.三、解答题(共8题,共72分)17.(8分)某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A,B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A30人/辆380元/辆B20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数设学校租用A型号客车x辆,租车总费用为y元.求y与x的函数解析式,请直接写出x的取值范围;若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案总费用最省?最省的总费用是多少?18.(8分)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.19.(8分)已知,关于x的方程x2﹣mx+m2﹣1=0,(1)不解方程,判断此方程根的情况;(2)若x=2是该方程的一个根,求m的值.20.(8分)如图所示,小王在校园上的A处正面观测一座教学楼墙上的大型标牌,测得标牌下端D处的仰角为30°,然后他正对大楼方向前进5m到达B处,又测得该标牌上端C处的仰角为45°.若该楼高为16.65m,小王的眼睛离地面1.65m,大型标牌的上端与楼房的顶端平齐.求此标牌上端与下端之间的距离(≈1.732,结果精确到0.1m).21.(8分)如图1,AB为半圆O的直径,半径的长为4cm,点C为半圆上一动点,过点C作CE⊥AB,垂足为点E,点D为弧AC的中点,连接DE,如果DE=2OE,求线段AE的长.小何根据学习函数的经验,将此问题转化为函数问题解决.小华假设AE的长度为xcm,线段DE的长度为ycm.(当点C与点A重合时,AE的长度为0cm),对函数y随自变量x的变化而变化的规律进行探究.下面是小何的探究过程,请补充完整:(说明:相关数据保留一位小数).(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm012345678y/cm01.62.53.34.04.75.85.7当x=6cm时,请你在图中帮助小何完成作图,并使用刻度尺度量此时线段DE的长度,填写在表格空白处:(2)在图2中建立平面直角坐标系,描出补全后的表中各组对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象解决问题,当DE=2OE时,AE的长度约为cm.22.(10分)如图1,在矩形ABCD中,AD=4,AB=2,将矩形ABCD绕点A逆时针旋转α(0<α<90°)得到矩形AEFG.延长CB与EF交于点H.(1)求证:BH=EH;(2)如图2,当点G落在线段BC上时,求点B经过的路径长.23.(12分)一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.甲,乙两公司单独完成此项工程,各需多少天?若让一个公司单独完成这项工程,哪个公司的施工费较少?24.甲、乙、丙、丁四位同学进行乒乓球单打比赛,要从中选出两位同学打第一场比赛.若确定甲打第一场,再从其余三位同学中随机选取一位,恰好选中乙同学的概率是.若随机抽取两位同学,请用画树状图法或列表法,求恰好选中甲、乙两位同学的概率.

参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】∵一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,∴a+b不一定大于0,故A错误,a−b<0,故B错误,ab<0,故C错误,<0,故D正确.故选D.2、B【解析】

根据俯视图是从上面看到的图形可得俯视图为正方形以及右下角一个三角形.【详解】从上面看,是正方形右边有一条斜线,如图:故选B.【点睛】考查了三视图的知识,根据俯视图是从物体的上面看得到的视图得出是解题关键.3、A【解析】

如图,且图像与y轴交于点,可知该抛物线的开口向下,即,①当时,故①错误.②由图像可知,当时,∴∴故②错误.③∵∴,又∵,∴,∴,∴,故③错误;④∵,,又∵,∴.故④正确.故答案选A.【点睛】本题考查二次函数系数符号的确定由抛物线的开口方向、对称轴和抛物线与坐标轴的交点确定.4、C【解析】

根据图像可得:a<0,b<0,c=0,即abc=0,则①正确;当x=1时,y<0,即a+b+c<0,则②错误;根据对称轴可得:-b2a=-3根据函数与x轴有两个交点可得:b2故选C.【点睛】本题考查二次函数的性质.能通过图象分析a,b,c的正负,以及通过一些特殊点的位置得出a,b,c之间的关系是解题关键.5、A【解析】

根据相反数的定义进行求解.【详解】1的相反数为:﹣1.故选A.【点睛】本题主要考查相反数的定义,熟练掌握相反数的定义是解答的关键,绝对值相等,符号相反的两个数互为相反数.6、A【解析】试题分析:根据角抛物线顶点式得到对称轴为直线x=4,利用抛物线对称性得到抛物线在1<x<2这段位于x轴的上方,而抛物线在2<x<3这段位于x轴的下方,于是可得抛物线过点(2,0)然后把(2,0)代入y=a(x-4)2-4(a≠0)可求出a=1.故选A7、D【解析】

各项计算得到结果,即可作出判断.【详解】A、原式=2a2,不符合题意;B、原式=-a6,不符合题意;C、原式=a2+2ab+b2,不符合题意;D、原式=-4b,符合题意,故选:D.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.8、A【解析】

根据题意可得等量关系:原计划种植的亩数改良后种植的亩数亩,根据等量关系列出方程即可.【详解】设原计划每亩平均产量万千克,则改良后平均每亩产量为万千克,根据题意列方程为:.故选:.【点睛】本题考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.9、B【解析】由内错角定义选B.10、B【解析】试题分析:∵2是关于x的方程x2﹣2mx+3m=0的一个根,∴22﹣4m+3m=0,m=4,∴x2﹣8x+12=0,解得x1=2,x2=1.①当1是腰时,2是底边,此时周长=1+1+2=2;②当1是底边时,2是腰,2+2<1,不能构成三角形.所以它的周长是2.考点:解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形的性质.二、填空题(本大题共6个小题,每小题3分,共18分)11、S=1n-1【解析】观察可得,n=2时,S=1;

n=3时,S=1+(3-2)×1=12;

n=4时,S=1+(4-2)×1=18;

…;

所以,S与n的关系是:S=1+(n-2)×1=1n-1.

故答案为S=1n-1.【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.12、3.03×101【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于303000有6位整数,所以可以确定n=6-1=1.详解:303000=3.03×101,故答案为:3.03×101.点睛:此题考查科学记数法表示较大的数的方法,准确确定a与n的值是解题的关键.13、.【解析】

作BK∥CF,使得BK=DE=2,作K关于直线CF的对称点G交CF于点M,连接BG交CF于D',则,此时△BD'E'的周长最小,作交CF于点F,可知四边形为平行四边形及四边形为矩形,在中,解直角三角形可知BH长,易得GK长,在Rt△BGK中,可得BG长,表示出△BD'E'的周长等量代换可得其值.【详解】解:如图,作BK∥CF,使得BK=DE=2,作K关于直线CF的对称点G交CF于点M,连接BG交CF于D',则,此时△BD'E'的周长最小,作交CF于点F.由作图知,四边形为平行四边形,由对称可知,即四边形为矩形在中,在Rt△BGK中,BK=2,GK=6,∴BG2,∴△BDE周长的最小值为BE'+D'E'+BD'=KD'+D'E'+BD'=D'E'+BD'+GD'=D'E'+BG=2+2.故答案为:2+2.【点睛】本题考查了最短距离问题,涉及了轴对称、矩形及平行四边形的性质、解直角三角形、勾股定理,难度系数较大,利用两点之间线段最短及轴对称添加辅助线是解题的关键.14、(x-2y)(x-2y+1)【解析】

根据所给代数式第一、二、五项一组,第三、四项一组,分组分解后再提公因式即可分解.【详解】=x2-4xy+4y2-2y+x=(x-2y)2+x-2y=(x-2y)(x-2y+1)15、【解析】

过点B作BF⊥OC于点F,易证S△OAE=S四边形DEBF=,S△OAB=S四边形DABF,因为,所以,,又因为AD∥BF,所以S△BCF∽S△ACD,可得BF:AD=2:5,因为S△OAD=S△OBF,所以×OD×AD=×OF×BF,即BF:AD=2:5=OD:OF,易证:S△OED∽S△OBF,S△OED:S△OBF=4:25,S△OED:S四边形EDFB=4:21,所以S△OED=,S△OBF=S△OED+S四边形EDFB=+=,即可得解:k=2S△OBF=.【详解】解:过点B作BF⊥OC于点F,由反比例函数的比例系数|k|的意义可知:S△OAD=S△OBF,∴S△OAD-S△OED=S△OBF一S△OED,即S△OAE=S四边形DEBF=,S△OAB=S四边形DABF,∵,∴,,∵AD∥BF∴S△BCF∽S△ACD,又∵,∴BF:AD=2:5,∵S△OAD=S△OBF,∴×OD×AD=×OF×BF∴BF:AD=2:5=OD:OF易证:S△OED∽S△OBF,∴S△OED:S△OBF=4:25,S△OED:S四边形EDFB=4:21∵S四边形EDFB=,∴S△OED=,S△OBF=S△OED+S四边形EDFB=+=,∴k=2S△OBF=.故答案为.【点睛】本题考查反比例函数的比例系数|k|的几何意义,解题关键是熟练运用相似三角形的判定定理和性质定理.16、5.【解析】试题分析:根据绝对值意义,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,所以-5的绝对值是5.故答案为5.考点:绝对值计算.三、解答题(共8题,共72分)17、(1)21≤x≤62且x为整数;(2)共有25种租车方案,当租用A型号客车21辆,B型号客车41辆时,租金最少,为19460元.【解析】

(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式,再根据AB两种车至少要能坐1441人即可得取x的取值范围;(2)由总费用不超过21940元可得关于x的不等式,解不等式后再利用函数的性质即可解决问题.【详解】(1)由题意得y=380x+280(62-x)=100x+17360,∵30x+20(62-x)≥1441,∴x≥20.1,∴21≤x≤62且x为整数;(2)由题意得100x+17360≤21940,解得x≤45.8,∴21≤x≤45且x为整数,∴共有25种租车方案,∵k=100>0,∴y随x的增大而增大,当x=21时,y有最小值,y最小=100×21+17360=19460,故共有25种租车方案,当租用A型号客车21辆,B型号客车41辆时,租金最少,为19460元.【点睛】本题考查了一次函数的应用、一元一次不等式的应用等,解题的关键是理解题意,正确列出函数关系式,会利用函数的性质解决最值问题.18、50°.【解析】

试题分析:由平行线的性质得到∠ABC=∠1=65°,∠ABD+∠BDE=180°,由BC平分∠ABD,得到∠ABD=2∠ABC=130°,于是得到结论.解:∵AB∥CD,∴∠ABC=∠1=65°,∵BC平分∠ABD,∴∠ABD=2∠ABC=130°,∴∠BDE=180°﹣∠ABD=50°,∴∠2=∠BDE=50°.【点评】本题考查了平行线的性质和角平分线定义等知识点,解此题的关键是求出∠ABD的度数,题目较好,难度不大.19、(1)证明见解析;(2)m=2或m=1.【解析】

(1)由△=(-m)2-4×1×(m2-1)=4>0即可得;(2)将x=2代入方程得到关于m的方程,解之可得.【详解】(1)∵△=(﹣m)2﹣4×1×(m2﹣1)=m2﹣m2+4=4>0,∴方程有两个不相等的实数根;(2)将x=2代入方程,得:4﹣2m+m2﹣1=0,整理,得:m2﹣8m+12=0,解得:m=2或m=1.【点睛】本题考查了根的判别式以及解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)将x=2代入原方程求出m值.20、大型标牌上端与下端之间的距离约为3.5m.【解析】试题分析:将题目中的仰俯角转化为直角三角形的内角的度数,分别求得CE和BE的长,然后求得DE的长,用CE的长减去DE的长即可得到上端和下端之间的距离.试题解析:设AB,CD的延长线相交于点E,∵∠CBE=45°,CE⊥AE,∴CE=BE,∵CE=16.65﹣1.65=15,∴BE=15,而AE=AB+BE=1.∵∠DAE=30°,∴DE==11.54,∴CD=CE﹣DE=15﹣11.54≈3.5(m),答:大型标牌上端与下端之间的距离约为3.5m.21、(1)5.3(2)见解析(3)2.5或6.9【解析】

(1)(2)按照题意取点、画图、测量即可.(3)中需要将DE=2OE转换为y与x的函数关系,注意DE为非负数,函数为分段函数.【详解】(1)根据题意取点、画图、测量的x=6时,y=5.3故答案为5.3(2)根据数据表格画图象得(3)当DE=2OE时,问题可以转化为折线y=与(2)中图象的交点经测量得x=2.5或6.9时DE=2OE.故答案为2.5或6.9【点睛】动点问题的函数图象探究题,考查了函数图象的画法,应用了数形结合思想和转化的数学思想.22、(1)见解析;(2)B点经过的路径长为π.【解析】

(1)、连接AH,根据旋转图形的性质得出AB=AE,∠ABH=∠AEH=90°,根据AH为公共边得出Rt△ABH和Rt△AEH全等,从而得出答案;(2)、根据题意得出∠EAB的度数,然后根据弧长的计算公式得出答案.【详解】(1)、证明:如图1中,连接AH,由旋转可得AB=AE,∠ABH=∠AEH=90°,又∵AH=AH,∴Rt△ABH≌Rt△AEH,∴BH=EH.(2)、解:由旋转可得AG=AD=4,AE=AB,∠EAG=∠BAC=90°,在Rt△ABG中,AG=4,AB=2,∴cos

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论