河北省唐山市2022-2023学年七年级下学期期末考试数学试卷_第1页
河北省唐山市2022-2023学年七年级下学期期末考试数学试卷_第2页
河北省唐山市2022-2023学年七年级下学期期末考试数学试卷_第3页
河北省唐山市2022-2023学年七年级下学期期末考试数学试卷_第4页
河北省唐山市2022-2023学年七年级下学期期末考试数学试卷_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省唐山市2022-2023学年七年级下学期期末数学试卷(解析

版)

一、选择题(本大题共14小题,每小题2分,共28分.在每小题给出的四个选项中,只有

一项是符合题目要求的)

1.计算4°的结果为()

A.0B.1C.2D.4

2.如图,NCBZ)是AABC的一个外角,ZCBD=SOo,ZA=35o,则/C=()

D.55°

3.已知x-2y=3,若用含y的代数式表示X,正确的是()

x

A.x-3+2yB.X=3-2yC.y=~ɜ

4.AABC中,如图选项正确画出AC边上的高的图形是()

5.已知aW0,下列运算中正确的是(

A.a+cΓ=aiB.ai÷a2=aC.(a3)2=a5D.a3∙a2=ab

6.若a<b,则下列不等式仍成立的是(

A.α+l>b+lB.a-3>b-3C.A>AD.-2a>-2b

22

7.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是(

B.内错角相等,两直线平行

C.两直线平行,同位角相等

D.两直线平行,内错角相等

8.已知"=-3,a+b=2,则J∕>+"2的值是()

A.6B.-6C.ID.

9.在AABC中,ZA=AZB=AZC,则此三角形是()

23

A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形

2

10.如果(3x+y)()=%-y2,则括号内的多项式为()

A.3x+γB.3x-yC.-3x-yD.-3x+y

11.如图,分别将木条4,b与固定的木条C钉在一起,Z1=50°,/2=80°,顺时针转

动木条小下列选项能使木条。与6平行的是()

C.旋转80°D.旋转130°

12.如图,△ABC的面积为24cτ√,如果8O=2CD,那么aABO的面积为()

C.12cm2D.16C∕M2

13.对于任何整数多项式(2m+3)2-25都能被下列各式中的哪一项整除()

A.4B.6C.nι+∖D.m-4

’2-3X<11

14.若不等式组I的解集是x>-3,则α的取值范围是()

,x+a>O

A.α<3B.a>3C.a23D.4W3

二、填空题(本大题共4个小题,每小题3分,共12分.其中第18小题第一空2分,第二

空1分)

15.(3分)将120000用科学记数法表示为.

16.(3分)“X与4的和不小于X的7倍”用不等式表示为.

17.(3分)己知方程x+y=10和2x+y=16的解相同,那么3x+2y=.

18.(3分)某加工零件标出的部分数据(如图),小明说,这四个数据中有一个标错了,请

你完善以下修改方案:若/A、ZB.NBCD所标数据正确,则图中NO所标数据应

三、解答题(本大题共7个小题,共60分,解答过程应写出文字说明、证明过程或演算步

骤)

19.(8分)解不等式组I2*+'>5χ-l①,请按下列步骤完成解答:

X-Al-X②

解:解不等式①,得.

解不等式②,得.

把不等式①和②的解集在数轴上表示出来:

IIIIIIIA

-1012345

所以原不等式组的解集为.

20.(8分)如果一个三角形的一边长为5c”7,另一边长为2c〃?,若第三边长为XCa

(1)第三边X的范围为.

(2)当第三边长为奇数时,求出这个三角形的周长,并指出它是什么三角形(按边分类).

21.(8分)已知代数式:(X-I)2+(X+y)(χ-y)+y1.

(1)化简这个代数式.

(2)若/-χ=4,求原代数式的值.

22.(8分)如图,Z∖ABC中,。是AB上一点,过点。作。E〃8C交AC于E点,F是BC

上一点,连接ER若NAOE=NL

(1)求证:AB//EF.

(2)若∕A+∕C=130°,求Nl的度数.

23.(9分)(1)请观察下列各式,能用完全平方公式因式分解的是(填序号),

并把你选出的多项式分解因式.

ΦΛ2-4x+4;

②/+x+l;

③/+IOx-25;

④(X+y)2+2(x+y)+1.

(2)根据对完全平方公式特征的理解;请给16X2+1添上一个单项式,使得到的多项式

能用完全平方公式分解因式.这个单项式可以为(写出所有情况).

24.(9分)我市某中学计划购买消毒液和洗手液两种物品.若购买8瓶消毒液和5瓶洗手

液需用170元;若购买4瓶消毒液和6瓶洗手液需用120元.

(1)消毒液和洗手液的单价各是多少元?

(2)学校决定购买消毒液和洗手液共110瓶,总费用不超过1350元,那么最多可以购

买多少瓶消毒液?

25.(10分)一张三角形纸片ABC中,ZC=30o,点。、E分别在边AC、BC上,将NC

沿JDE折叠,点C落在点C'的位置.

AAA

C'EC,BCEBcEB

图1图2图3

(1)如图1,点C'在边BC上,ZADC=,可以发现NAoC'与NC的

数量关系是;

(2)如图2,点C'在4A8C外部,C'E与AC交于点凡若NDEC=55。,求/AFE

的度数;

(3)如图3,点C'在BC内部,请直接写出乙4DC'、ZBEC1与NC之间的数量

关系.

参考答案与试题解析

一、选择题(本大题共14小题,每小题2分,共28分.在每小题给出的四个选项中,只有

一项是符合题目要求的)

1.计算4°的结果为()

A.OB.1C.2D.4

【分析】根据“°=l(α≠0),进行计算即可解答.

【解答】解:计算4°的结果为1,

故选:B.

【点评】本题考查了零指数幕,熟练掌握J=I(aW0)是解题的关键.

2.如图,NCB。是AABC的一个外角,ZCBD≈80o,/4=35°,则/C=()

A.35oB.40oC.45oD.55°

【分析】根据三角形的外角的性质可知NCBO=NA+NC,据此可求得答案.

【解答】解::/CS。是BC的一个外角,

.∖ZCBD=ZA+ZC.

:.AC=ACBD-ZA=80°-35°=45°.

故选:C.

【点评】本题主要考查三角形的外角的性质,即三角形的外角等于与它不相邻的两个内

角的和,牢记三角形的外角的性质是解题的关键.

3.已知x-2y=3,若用含y的代数式表示X,正确的是()

=

A.x=3+2yB.x=3-2yC.y^~~~D.y二

2

【分析】把y看作已知数求出X即可.

【解答】解:方程χ-2y=3,

解得:x=2y+3∙

故选:A.

【点评】此题考查了解二元一次方程,解题的关键是将一个未知数看作已知数求出另一

个未知数.

4.Z∖ABC中,如图选项正确画出AC边上的高的图形是

AD

【分析】根据高线的定义进行作答即可.

【解答】解:4C边上的高就是过B作垂线垂直AC交C4的延长线于。点,因此只有选

项B符合条件,

故选:B.

【点评】本题考查画高线.熟练掌握高线是从三角形的一个顶点出发,到对边的垂线段,

是解题的关键.

5.已知α≠0,下列运算中正确的是()

A.a+a2-a3B.a3÷a2-aC.(α3)2-a5D.a3∙a2-aβ

【分析】根据合并同类项法则、同底数幕的乘除法、累的乘方运算依次计算判断即可.

【解答】解:A.〃与次不是同类项,不能进行合并,选项错误,不符合题意;

B.ai÷a1=a,选项正确,符合题意;

C.(。3)2=不,选项错误,不符合题意;

D.aia2=a5,选项错误,不符合题意;

故选:B.

【点评】本题主要考查同底数事的乘除法、嘉的乘方运算,熟练掌握各个运算法则是解

题的关键.

6.若a<b,则下列不等式仍成立的是()

A.a+∖>b+∖B.a-3>b-3C.更>∙LD.-2a>-Ib

22

【分析】根据不等式的性质1对A、B进行判断;根据不等式的性质2对C进行判断;

根据不等式的性质3对D进行判断.

【解答】解:A.则α+l<Z>+l,所以A选项不符合题意;

B.a<b,则“-3V8-3,所以8选项不符合题意;

C.a<b,则旦<电,所以C选项不符合题意;

22

D.a<b,则-24>-26,所以。选项符合题意.

故选:D.

【点评】本题考查了不等式的基本性质:熟练掌握不等式的性质是解决问题的关键.

7.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()

B.内错角相等,两直线平行

C.两直线平行,同位角相等

D.两直线平行,内错角相等

【分析】由已知可知/OPF=NBAF,从而得出同位角相等,两直线平行.

【解答】解::NDPF=NBAF,

.∖AB∕∕PD(同位角相等,两直线平行).

【点评】此题主要考查了基本作图与平行线的判定,正确理解题目的含义是解决本题的

关键.

8.已知αb=-3,a+b=2,则,4+而2的值是()

A.6B.-6C.1D.-1

【分析】将/"帅2变形为必(a+b),再代入计算即可.

【解答】解:因为R?=-3,a+b=2,

所以a2b^-ab2

=ab(a+b)

=-3×2

=-6,

故选:B.

【点评】本题考查提公因式法分解因式和代数式求值,将/6+帅2变形为"(a+b)是正

确解答的关键.

9.在中,ZA=AZB=AZC,则此三角形是()

23

A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形

【分析】用NA表示出N8、ZC,然后利用三角形的内角和等于180°列方程求解即可.

【解答】解:YNA=工/B=JLNC,

23

:.ZB=2ZA,NC=3NA,

VZA+ZB+ZC=180°,

.∙.NA+2∕A+3NA=180°,

解得NA=30°,

所以,/8=2X30°=60°,

ZC=3×30o=90°,

所以,此三角形是直角三角形.

故选:B.

【点评】本题考查了三角形的内角和定理,熟记定理并用N4列出方程是解题的关键.

10.如果(3x+y)()=9x2-y2,则括号内的多项式为()

A.3x+yB.3x-yC.-3x-yD.-3x+y

【分析】根据平方差公式,即可得出结果.

【解答】解:(3x+y)(3x-y)=9x2-y2;

故选:B.

【点评】本题考查平方差公式.熟练掌握("+b)(Ω→)=a2-b2,是解题的关键.

11.如图,分别将木条α,6与固定的木条C钉在一起,Nl=50°,/2=80°,顺时针转

动木条”,下列选项能使木条。与6平行的是()

a

2.

b

A.旋转30°B.旋转50°C.旋转80°D.旋转130°

【分析】根据平行线的判定定理即可求解.

∙.∙∕1=N3,

.∙.N1=∕2=5O°,

故应将木条a顺时针转动30°.

故选:A.

【点评】本题考查平行线的判定定理.根据题意选择合适的判定定理是解题的关键.

12.如图,BC的面积为24C∏12,如果8O=2CO,那么aABO的面积为()

C.12cm2D.16CT7Z2

【分析】AABO的边8。上的高和AABC的边BC上的高的长度相同,据此可求得答案.

【解答】解:根据题意可知aABO的边BO上的高和AABC的边BC上的高的长度相同,

设为小

1q1

'△ABC=ɪh∙BC=yh<D,$△ABD=ɪh∙BD=h∙CD>

■32

,^^2^SΔABD=SΔABC=24(cm)∙

・z9

,^SAABD=16(Cm")s∙

故选:D.

【点评】本题主要考查三角形的高,牢记三角形的高的定义是解题的关键.

13.对于任何整数相,多项式(2切+3)2-25都能被下列各式中的哪一项整除()

A.4B.6C.加+1D.7%-4

【分析】利用平方差公式将原式分解因式,进而得出各因式再分析得出即可.

【解答】解:(2w+3)2-25=(2m+3+5)(2,*+3-5)=(2,n+8)(2∕∏-2)=4(w+4)

(fn-1),

・・・对于任何整数相,多项式4都能被.

故选:A.

【点评】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.

14.若不等式组J乙"门的解集是房>-3,则。的取值范围是()

x+a>O

A.〃<3B.a>3C.a≥3D.α≤3

【分析】先求出每一个不等式的解集,再根据不等式组的解集,即可得到关于。的不等

式,然后求解即可.

【解答】解:由(9乙-3x<,C可11得:fγχ>[-3

x+a>0[x>-a

:不等式组的解集为:x>-3,

一αW^3,

;.a23,

故选:C.

【点评】本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式的方

法.

二、填空题(本大题共4个小题,每小题3分,共12分.其中第18小题第一空2分,第二

空1分)

15.(3分)将120000用科学记数法表示为1.2X1()5

【分析】对于一个绝对值较大的数,用科学记数法写成“X10”的形式,其中IWIalVl0,

〃是比原整数位数少1的数.

【解答】解:120000=1.2X1()5;

故答案为:1.2X105.

【点评】本题考查科学记数法.熟练掌握科学记数法的表示方法:“X10",lW∣α∣<10,

〃为整数,是解题的关键.

16.(3分)“x与4的和不小于X的7倍”用不等式表示为x+4N7x.

【分析】根据题目中的语句,可以用含X的不等式表示出来,从而可以解答本题.

【解答】解:“x与4的和不小于X的7倍”用不等式表示为x+427x,

故答案为:x+4≥7x.

【点评】本题考查由实际问题抽象出一元一次不等式,解答本题的关键是明确题意,写

出相应的不等式.

17.(3分)己知方程x+y=10和2x+y=16的解相同,那么3x+2V=26.

【分析】让两个等式相加即可得到结果.

【解答】解:两式相加得:3x+2y=26,

故答案为:26.

【点评】本题考查二元一次方程组的解法,掌握加减消元法是解题的关键.

18.(3分)某加工零件标出的部分数据(如图),小明说,这四个数据中有一个标错了,请

你完善以下修改方案:若NA、NB、NBCz)所标数据正确,则图中NQ所标数据应上

大(填“增大”或“减小”)5度.

【分析】连接AC并延长交AB于点。,利用外角的性质,求出NQ的度数,即可得出结

论.

【解答】解:连接AC并延长交48于点。,如图:

D

.∖ZBCD^ZBCE+ZDCE^ZBAC+ZB+ZD+ΛDAC^ZB+ZD+ZDAB,

即:155o=40o+ZD+90o,

.∙.NO=25°,

:标注的/0=20°,25°-20°=5°;

.∙.图中No所标数据应增大5°,

故答案为:增大,5.

【点评】本题考查三角形的外角的性质.熟练掌握三角形的一个外角等于与它不相邻的

两个内角的和,是解题的关键.

三、解答题(本大题共7个小题,共60分,解答过程应写出文字说明、证明过程或演算步

骤)

,9+2>5κ-l①

19.(8分)解不等式组“xX°°X请按下列步骤完成解答:

,x-l加七②

解:解不等式①,得Λ<3■

解不等式②,得41.

把不等式①和②的解集在数轴上表示出来:

IIIIIIIA

-1012345

所以原不等式组的解集为l<χV3.

【分析】根据解不等式组的步骤进行求解即可.

【解答】解:解不等式①,得x<3,

解不等式②,得x>l,

把不等式①和②的解集在数轴上表示出来:

------d---o------►

-1O12345

所以原不等式组的解集为IVXV3.

故答案为:XV3,x>1>1<x<3.

【点评】本题考查求不等式组的解集,正确的求出每一个不等式的解集,是解题的关键.

20.(8分)如果一个三角形的一边长为5c〃?,另一边长为2c"?,若第三边长为XC%

(1)第三边X的范围为3VxV7.

(2)当第三边长为奇数时,求出这个三角形的周长,并指出它是什么三角形(按边分类).

【分析】(1)三角形两边的和大于第三边,三角形两边的差小于第三边,据此可求得答

案.

(2)先求得第三边的长度,然后计算三角形的周长并按边的相等关系分类即可.

【解答】解:(1)根据三角形两边的和大于第三边,则

x<5+2.

即x<l.

根据三角形两边的差小于第三边,则

5-2<x.

即3<x.

综上所述

3<x<7.

故答案为:3<x<7.

(2)Y第三边的长为奇数,

.∙.第三边的长为5cm.

三角形的周长=5+5+2=12(cm).

;两条边的长为5cm,另外一条边的长为2cn?,

这个三角形是底边和腰不相等的等腰三角形.

【点评】本题主要考查三角形三边之间的大小关系以及三角形按边的相等关系分类,牢

记三角形三边之间的大小关系(三角形两边的和大于第三边,三角形两边的差小于第三

边)和三角形按边的相等关系分类是解题的关键.

21.(8分)已知代数式:(X-I)2+(x+y)(x-y)+y2.

(1)化简这个代数式.

(2)若/-χ=4,求原代数式的值.

【分析】(1)先进行完全平方公式和平方差公式的运算,再合并同类项即可;

(2)整式代入求值即可.

【解答】解:(I)(X-1)2+(χ+y)(χ-y)+)?

=/-2x+l+x2-y2+y2,

=2?-2x+b

(2)Vx2-x—4,

,原式=2(x2-X)+1

=2×4+l

=9.

【点评】本题考查整式的化简求值,熟练掌握相关运算法则,正确的计算,是解题的关

键.

22.(8分)如图,ZiABC中,。是AB上一点,过点。作。E〃8C交AC于E点,F是BC

上一点,连接EF,若NADE=NL

(1)求证:AB//EF.

(2)若∕A+∕C=130°,求Nl的度数.

【分析】(1)DE//BC,得到NAOE=NB,推出NB=N1,即可得证;

(2)三角形的内角和定理,求出NB的度数,即可得解.

【解答】(1)证明:

.".ZADE=ZB,

又YNl=NADE,

ΛZB=Zl,

J.AB//DF-,

(2)解:VZA+ZB+ZC≈180°,

ΛZB=180°-130°=50°,

VZB=Zl,

ΛZl=50o.

【点评】本题考查平行线的判定和性质,三角形的内角和定理.熟练掌握平行线的性质

和三角形的内角和定理,是解题的关键.

23.(9分)(1)请观察下列各式,能用完全平方公式因式分解的是①④(填序号),

并把你选出的多项式分解因式.

①Λ2-4x+4;

②/+x+1;

③/+IOx-25;

④(X+y)2+2(X+y)+1.

(2)根据对完全平方公式特征的理解;请给16√+1添上一个单项式,使得到的多项式

能用完全平方公式分解因式.这个单项式可以为±8x,64√t(写出所有情况).

【分析】(1)根据完全平方公式∕±2C⅛+Z>2=(a+b)2处理;

(2)添项,配成完全平方式处理.

【解答】解:(1)①④.

X2-4x+4=(X-2)2,

(X+y)2+2(X+y)+1=(x+y+l)2,

故答案为:①④.

(2)16∕±8x+l=(4X±1)2,

64X4+16X2+1≈(8X+1)2;

故可添单项为:±8x,64/.

故答案为:±8x,64.r4.

【点评】本题考查公式法因式分解,掌握公式的特征是解题的关键,注意添项时情况的

多样性.

24.(9分)我市某中学计划购买消毒液和洗手液两种物品.若购买8瓶消毒液和5瓶洗手

液需用170元;若购买4瓶消毒液和6瓶洗手液需用120元.

(1)消毒液和洗手液的单价各是多少元?

(2)学校决定购买消毒液和洗手液共110瓶,总费用不超过1350元,那么最多可以购

买多少瓶消毒液?

【分析】(1)设消毒液和洗手液的单价分别为X元和y元,根据题意,列出二元一次方

程组进行求解即可;

(2)设可以购买机瓶消毒液,根据题意列出一元一次不等式,进行求解即可.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论