江苏省昆山市、太仓市重点中学2024届中考数学最后冲刺模拟试卷含解析_第1页
江苏省昆山市、太仓市重点中学2024届中考数学最后冲刺模拟试卷含解析_第2页
江苏省昆山市、太仓市重点中学2024届中考数学最后冲刺模拟试卷含解析_第3页
江苏省昆山市、太仓市重点中学2024届中考数学最后冲刺模拟试卷含解析_第4页
江苏省昆山市、太仓市重点中学2024届中考数学最后冲刺模拟试卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省昆山市、太仓市重点中学2024届中考数学最后冲刺模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.整数a、b在数轴上对应点的位置如图,实数c在数轴上且满足,如果数轴上有一实数d,始终满足,则实数d应满足().A. B. C. D.2.第24届冬奥会将于2022年在北京和张家口举行,冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等.如图,有5张形状、大小、质地均相同的卡片,正面分别印有高山滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是()A. B. C. D.3.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是()A. B.C. D.4.下列四个数表示在数轴上,它们对应的点中,离原点最远的是()A.﹣2 B.﹣1 C.0 D.15.如图,已知点A在反比例函数y=上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为()A.y= B.y= C.y= D.y=﹣6.如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD7.如果关于x的分式方程有负分数解,且关于x的不等式组的解集为x<-2,那么符合条件的所有整数a的积是()A.-3 B.0 C.3 D.98.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与相似的是()A. B.C. D.9.下表是某校合唱团成员的年龄分布,对于不同的x,下列关于年龄的统计量不会发生改变的是()年龄/岁13141516频数515x10-xA.平均数、中位数 B.众数、方差 C.平均数、方差 D.众数、中位数10.如图,反比例函数y=-4x的图象与直线y=-1A.8B.6C.4D.211.计算:的结果是()A. B.. C. D.12.如图所示的几何体,上下部分均为圆柱体,其左视图是()A. B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC、BD,若S四边形ABCD=18,则BD的最小值为_________.14.计算:-=________.15.已知抛物线y=,那么抛物线在y轴右侧部分是_________(填“上升的”或“下降的”).16.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C的射线OC即是∠AOB的平分线.做法中用到全等三角形判定的依据是______.17.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是.18.如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD的度数是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)近几年“雾霾”成为全社会关注的话题某校环保志愿者小组对该市2018年空气质量进行调查,从全年365天中随机抽查了50天的空气质量指数(AQI),得到以下数据:43、62、80、78、46、78、23、59、32、78、86、125、98、116、86、69、28、43、58、87、75、116、178、146、57、26、43、59、77、103、126、159、201、289、315、253、196、102、93、72、56、43、39、44、47、34、31、29、43、1.(1)请你完成如下的统计表;AQI0~5051~100101~150151~200201~250300以上质量等级A(优)B(良)C(轻度污染)D(中度污染)E(重度污染)F(严重污染)天数(2)请你根据题中所给信息绘制该市2018年空气质量等级条形统计图;(3)请你估计该市全年空气质量等级为“重度污染”和“严重污染”的天数.20.(6分)如图1,点为正的边上一点(不与点重合),点分别在边上,且.(1)求证:;(2)设,的面积为,的面积为,求(用含的式子表示);(3)如图2,若点为边的中点,求证:.图1图221.(6分)计算:-2-2-+022.(8分)(1)计算:;(2)化简,然后选一个合适的数代入求值.23.(8分)已知△ABC在平面直角坐标系中的位置如图所示.分别写出图中点A和点C的坐标;画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;求点A旋转到点A′所经过的路线长(结果保留π).24.(10分)如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.求二次函数y=ax2+2x+c的表达式;连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.25.(10分)如图,在平面直角坐标系xOy中,直线y=kx+m与双曲线y=﹣相交于点A(m,2).(1)求直线y=kx+m的表达式;(2)直线y=kx+m与双曲线y=﹣的另一个交点为B,点P为x轴上一点,若AB=BP,直接写出P点坐标.26.(12分)如图,二次函数的图象与x轴交于和两点,与y轴交于点C,一次函数的图象过点A、C.(1)求二次函数的表达式(2)根据函数图象直接写出使二次函数值大于一次函数值的自变量x的取值范围.27.(12分)如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上)若△CEF与△ABC相似.①当AC=BC=2时,AD的长为;②当AC=3,BC=4时,AD的长为;当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】

根据a≤c≤b,可得c的最小值是﹣1,根据有理数的加法,可得答案.【详解】由a≤c≤b,得:c最小值是﹣1,当c=﹣1时,c+d=﹣1+d,﹣1+d≥0,解得:d≥1,∴d≥b.故选D.【点睛】本题考查了实数与数轴,利用a≤c≤b得出c的最小值是﹣1是解题的关键.2、B【解析】

先找出滑雪项目图案的张数,结合5张形状、大小、质地均相同的卡片,再根据概率公式即可求解.【详解】∵有5张形状、大小、质地均相同的卡片,滑雪项目图案的有高山滑雪和单板滑雪2张,∴从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是.故选B.【点睛】本题考查了简单事件的概率.用到的知识点为:概率=所求情况数与总情况数之比.3、B【解析】

首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为1.2x元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程,【详解】设学校购买文学类图书平均每本书的价格是x元,可得:故选B.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.4、A【解析】

由于要求四个数的点中距离原点最远的点,所以求这四个点对应的实数绝对值即可求解.【详解】∵|-1|=1,|-1|=1,∴|-1|>|-1|=1>0,∴四个数表示在数轴上,它们对应的点中,离原点最远的是-1.故选A.【点睛】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力,也利用了数形结合的思想.5、C【解析】

由双曲线中k的几何意义可知据此可得到|k|的值;由所给图形可知反比例函数图象的两支分别在第一、三象限,从而可确定k的正负,至此本题即可解答.【详解】∵S△AOC=4,∴k=2S△AOC=8;∴y=;故选C.【点睛】本题是关于反比例函数的题目,需结合反比例函数中系数k的几何意义解答;6、D【解析】

∵∠ACD对的弧是,对的另一个圆周角是∠ABD,∴∠ABD=∠ACD(同圆中,同弧所对的圆周角相等),又∵AB为直径,∴∠ADB=90°,∴∠ABD+∠BAD=90°,即∠ACD+∠BAD=90°,∴与∠ACD互余的角是∠BAD.故选D.7、D【解析】解:,由①得:x≤2a+4,由②得:x<﹣2,由不等式组的解集为x<﹣2,得到2a+4≥﹣2,即a≥﹣3,分式方程去分母得:a﹣3x﹣3=1﹣x,把a=﹣3代入整式方程得:﹣3x﹣6=1﹣x,即,符合题意;把a=﹣2代入整式方程得:﹣3x﹣5=1﹣x,即x=﹣3,不合题意;把a=﹣1代入整式方程得:﹣3x﹣4=1﹣x,即,符合题意;把a=0代入整式方程得:﹣3x﹣3=1﹣x,即x=﹣2,不合题意;把a=1代入整式方程得:﹣3x﹣2=1﹣x,即,符合题意;把a=2代入整式方程得:﹣3x﹣1=1﹣x,即x=1,不合题意;把a=3代入整式方程得:﹣3x=1﹣x,即,符合题意;把a=4代入整式方程得:﹣3x+1=1﹣x,即x=0,不合题意,∴符合条件的整数a取值为﹣3;﹣1;1;3,之积为1.故选D.8、B【解析】

根据相似三角形的判定方法一一判断即可.【详解】解:因为中有一个角是135°,选项中,有135°角的三角形只有B,且满足两边成比例夹角相等,故选:B.【点睛】本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.9、D【解析】

由表易得x+(10-x)=10,所以总人数不变,14岁的人最多,众数不变,中位数也可以确定.【详解】∵年龄为15岁和16岁的同学人数之和为:x+(10-x)=10,∴由表中数据可知人数最多的是年龄为14岁的,共有15人,合唱团总人数为30人,∴合唱团成员的年龄的中位数是14,众数也是14,这两个统计量不会随着x的变化而变化.故选D.10、A【解析】试题解析:由于点A、B在反比例函数图象上关于原点对称,则△ABC的面积=2|k|=2×4=1.故选A.考点:反比例函数系数k的几何意义.11、B【解析】

根据分式的运算法则即可求出答案.【详解】解:原式===故选;B【点睛】本题考查分式的运算法则,解题关键是熟练运用分式的运算法则,本题属于基础题型.12、C【解析】试题分析:∵该几何体上下部分均为圆柱体,∴其左视图为矩形,故选C.考点:简单组合体的三视图.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、6【解析】

过A作AM⊥CD于M,过A作AN⊥BC于N,先根据“AAS”证明△DAM≌△BAN,再证明四边形AMCN为正方形,可求得AC=6,从而当BD⊥AC时BD最小,且最小值为6.【详解】如下图,过A作AM⊥CD于M,过A作AN⊥BC于N,则∠MAN=90°,∠DAM+∠BAM=90°,∠BAM+∠BAN=90°,∴∠DAM=∠BAN.∵∠DMA=∠N=90°,AB=AD,∴△DAM≌△BAN,∴AM=AN,∴四边形AMCN为正方形,∴S四边形ABCD=S四边形AMCN=AC2,∴AC=6,∴BD⊥AC时BD最小,且最小值为6.故答案为:6.【点睛】本题考查了全等三角形的判定与性质,正方形的判定与性质,正确作出辅助线是解答本题的关键.14、2【解析】试题解析:原式故答案为15、上升的【解析】

∵抛物线y=x2-1开口向上,对称轴为x=0(y轴),

∴在y轴右侧部分抛物线呈上升趋势.故答案为:上升的.【点睛】本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.16、SSS.【解析】

由三边相等得△COM≌△CON,即由SSS判定三角全等.做题时要根据已知条件结合判定方法逐个验证.【详解】由图可知,CM=CN,又OM=ON,∵在△MCO和△NCO中,∴△COM≌△CON(SSS),∴∠AOC=∠BOC,即OC是∠AOB的平分线.故答案为:SSS.【点睛】本题考查了全等三角形的判定及性质.要熟练掌握确定三角形的判定方法,利用数学知识解决实际问题是一种重要的能力,要注意培养.17、10【解析】

由正方形性质的得出B、D关于AC对称,根据两点之间线段最短可知,连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.【详解】如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.∵四边形ABCD是正方形,∴B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴DE==10,故PB+PE的最小值是10.故答案为10.18、32°【解析】

根据直径所对的圆周角是直角得到∠ADB=90°,求出∠A的度数,根据圆周角定理解答即可.【详解】∵AB是⊙O的直径,

∴∠ADB=90°,

∵∠ABD=58°,

∴∠A=32°,

∴∠BCD=32°,

故答案为32°.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)补全统计表见解析;(2)该市2018年空气质量等级条形统计图见解析;(3)29天.【解析】

(1)由已知数据即可得;(2)根据统计表作图即可得;(3)全年365天乘以样本中“重度污染”和“严重污染”的天数和所占比例.【详解】(1)补全统计表如下:AQI0~5051~100101~150151~200201~250300以上质量等级A(优)B(良)C(轻度污染)D(中度污染)E(重度污染)F(严重污染)天数16207331(2)该市2018年空气质量等级条形统计图如下:(3)估计该市全年空气质量等级为“重度污染”和“严重污染”的天数为365×≈29天.【点睛】本题考查了条形统计图的应用与用样本估计总体.读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.20、(1)详见解析;(1)详见解析;(3)详见解析.【解析】

(1)根据两角对应相等的两个三角形相似即可判断;

(1)如图1中,分别过E,F作EG⊥BC于G,FH⊥BC于H,S1=•BD•EG=•BD•EG=•a•BE•sin60°=•a•BE,S1=•CD•FH=•b•CF,可得S1•S1=ab•BE•CF,由(1)得△BDE∽△CFD,,即BE•FC=BD•CD=ab,即可推出S1•S1=a1b1;

(3)想办法证明△DFE∽△CFD,推出,即DF1=EF•FC;【详解】(1)证明:如图1中,

在△BDE中,∠BDE+∠DEB+∠B=180°,又∠BDE+∠EDF+∠FDC=180°,

∴∠BDE+∠DEB+∠B=∠BDE+∠EDF+∠FDC,

∵∠EDF=∠B,

∴∠DEB=∠FDC,

又∠B=∠C,

∴△BDE∽△CFD.

(1)如图1中,分别过E,F作EG⊥BC于G,FH⊥BC于H,

S1=•BD•EG=•BD•EG=•a•BE•sin60°=•a•BE,S1=•CD•FH=•b•CF,

∴S1•S1=ab•BE•CF

由(1)得△BDE∽△CFD,

∴,即BE•FC=BD•CD=ab,

∴S1•S1=a1b1.(3)由(1)得△BDE∽△CFD,

∴,

又BD=CD,

∴,

又∠EDF=∠C=60°,

∴△DFE∽△CFD,

∴,即DF1=EF•FC.【点睛】本题考查了相似形综合题、等边三角形的性质、相似三角形的判定和性质、三角形的面积等知识,解题的关键是正确寻找相似三角形的相似的条件.21、【解析】

直接利用负指数幂的性质以及零指数幂的性质和特殊角的锐角三角函数值分别化简,再根据实数的运算法则即可求出答案.【详解】解:原式=【点睛】本题考查了负指数幂的性质以及零指数幂的性质和特殊角的锐角三角函数值,熟记这些运算法则是解题的关键.22、(1)0;(2),答案不唯一,只要x≠±1,0即可,当x=10时,.【解析】

(1)根据有理数的乘方法则、零次幂的性质、特殊角的三角函数值计算即可;(2)先把括号内通分,再把除法运算化为乘法运算,然后约分,再根据分式有意义的条件把x=10代入计算即可.【详解】解:(1)原式==1﹣3+2+1﹣1=0;(2)原式==由题意可知,x≠1∴当x=10时,原式==.【点睛】本题考查实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值;分式的化简求值,掌握计算法则正确计算是本题的解题关键.23、(1)、(2)见解析(3)【解析】试题分析:(1)根据点的平面直角坐标系中点的位置写出点的坐标;(2)根据旋转图形的性质画出旋转后的图形;(3)点A所经过的路程是以点C为圆心,AC长为半径的扇形的弧长.试题解析:(1)A(0,4)C(3,1)(2)如图所示:(3)根据勾股定理可得:AC=3,则.考点:图形的旋转、扇形的弧长计算公式.24、(1)y=﹣x2+2x+3(2)(,)(3)当点P的坐标为(,)时,四边形ACPB的最大面积值为【解析】

(1)根据待定系数法,可得函数解析式;(2)根据菱形的对角线互相垂直且平分,可得P点的纵坐标,根据自变量与函数值的对应关系,可得P点坐标;(3)根据平行于y轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PQ的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案.【详解】(1)将点B和点C的坐标代入函数解析式,得解得二次函数的解析式为y=﹣x2+2x+3;(2)若四边形POP′C为菱形,则点P在线段CO的垂直平分线上,如图1,连接PP′,则PE⊥CO,垂足为E,∵C(0,3),∴∴点P的纵坐标,当时,即解得(不合题意,舍),∴点P的坐标为(3)如图2,P在抛物线上,设P(m,﹣m2+2m+3),设直线BC的解析式为y=kx+b,将点B和点C的坐标代入函数解析式,得解得直线BC的解析为y=﹣x+3,设点Q的坐标为(m,﹣m+3),PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,OA=1,S四边形ABPC=S△ABC+S△PCQ+S△PBQ当m=时,四边形ABPC的面积最大.当m=时,,即P点的坐标为当点P的坐标为时,四边形ACPB的最大面积值为.【点睛】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用菱形的性质得出P点的纵坐标,又利用了自变量与函数值的对应关系;解(3)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质.25、(1)m=﹣1;y=﹣3x﹣1;(2)P1(5,0),P2(,0).【解析】

(1)将A代入反比例函数中求出m的值,即可求出直线解析式,(2)联立方程组求出B的坐标,理由过两点之间距离公式求出AB的长,求出P点坐标,表示出BP长即可解题.【详解】解:(1)∵点A(m,2)在双曲线上,∴m=﹣1,∴A(﹣1,2),直线y=kx﹣1,∵点A(﹣1,2)在直线y=kx﹣1上,∴y=﹣3x﹣1.(2),解得或,∴B(,﹣3),∴AB==,设P(n,0),则有(n﹣)2+32=解得n=5或,∴P1(5,0),P2(,0).【点睛】本题考查了一次函数和反比例函数的交点问题,中等难度,联立方程组,会用两点之间距离公式是解题关键.26、(1);(2).【解析】

(1)将和两点代入函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论