




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第页一元二次方程根及系数的关系应用例析及训练对于一元二次方程,当判别式△=时,其求根公式为:;假设两根为,当△≥0时,那么两根的关系为:;,根及系数的这种关系又称为韦达定理;它的逆定理也是成立的,即当,时,那么那么是的两根。一元二次方程的根及系数的关系,综合性强,应用极为广泛,在中学数学中占有极重要的地位,也是数学学习中的重点。学习中,老师除了要求同学们应用韦达定理解答一些变式题目外,还经常要求同学们熟记一元二次方程根的判别式存在的三种状况,以及应用求根公式求出方程的两个根,进而分解因式,即。下面就对应用韦达定理可能出现的问题举例做些分析,盼望能给同学们带来小小的帮忙。一,依据判别式,探讨一元二次方程的根。例1:关于的方程〔1〕有两个不相等的实数根,且关于的方程〔2〕没有实数根,问取什么整数时,方程〔1〕有整数解?分析:在同时满意方程〔1〕,〔2〕条件的的取值范围中筛选符合条件的的整数值。
解:∵方程〔1〕有两个不相等的实数根,
解得;
∵方程〔2〕没有实数根,
解得;
于是,同时满意方程〔1〕,〔2〕条件的的取值范围是
其中,的整数值有或
当时,方程〔1〕为,无整数根;
当时,方程〔1〕为,有整数根。解得:
所以,使方程〔1〕有整数根的的整数值是。说明:熟识一元二次方程实数根存在条件是解答此题的根底,正确确定的取值范围,并依靠娴熟的解不等式的根本技能和肯定的逻辑推理,从而筛选出,这也正是解答此题的根本技巧。二,判别一元二次方程两根的符号。例1:不解方程,判别方程两根的符号。分析:对于来说,往往二次项系数,一次项系数,常数项皆为,可据此求出根的判别式△,但△只能用于判定根的存在及否,假设判定根的正负,那么须要确定或的正负状况。因此解答此题的关键是:既要求出判别式的值,又要确定或的正负状况。解:∵,∴△=—4×2×(—7)=65>0∴方程有两个不相等的实数根。设方程的两个根为,∵<0∴原方程有两个异号的实数根。说明:判别根的符号,须要把“根的判别式〞和“根及系数的关系〞结合起来进展确定,另外由于此题中<0,所以可判定方程的根为一正一负;倘假设>0,仍需考虑的正负,方可判别方程是两个正根还是两个负根。
三,一元二次方程的一个根,求出另一个根以及字母系数的值。例2:方程的一个根为2,求另一个根及的值。分析:此题通常有两种解法:一是依据方程根的定义,把代入原方程,先求出的值,再通过解方程方法求出另一个根;二是利用一元二次方程的根及系数的关系求出另一个根及的值。解法一:把代入原方程,得:即解得当时,原方程均可化为:解得:∴方程的另一个根为4,的值为3或—1。解法二:设方程的另一个根为,依据题意,利用韦达定理得:∵,∴把代入,可得:∴把代入,可得:即解得∴方程的另一个根为4,的值为3或—1。说明:比拟起来,解法二应用了韦达定理,解答起来较为简单。例3:方程有两个实数根,且两个根的平方和比两根的积大21,求的值。分析:此题假设利用转化的思想,将等量关系“两个根的平方和比两根的积大21〞转化为关于的方程,即可求得的值。解:∵方程有两个实数根,
∴△解这个不等式,得≤0
设方程两根为
那么,整理得:解得:又∵,∴说明:当求出后,还需留意隐含条件,应舍去不合题意的。四,运用判别式及根及系数的关系解题。例5:,是关于的一元二次方程的两个非零实数根,问和能否同号?假设能同号,恳求出相应的的取值范围;假设不能同号,请说明理由,解:因为关于的一元二次方程有两个非零实数根,∴那么有又∵,是方程的两个实数根,所以由一元二次方程根及系数的关系,可得:
假设,同号,那么有两种可能:
〔1〕
〔2〕假设,那么有:;即有:解这个不等式组,得∵时方程才有实树根,∴此种状况不成立。
假设,
那么有:即有:解这个不等式组,得;又∵,∴当时,两根能同号
说明:一元二次方程根及系数的关系深刻提示了一元二次方程中根及系数的内在联系,是分析探讨有关一元二次方程根的问题的重要工具,也是计算有关一元二次方程根的计算问题的重要工具。知识的运用方法敏捷多样,是设计考察创新实力试题的良好载体,在中考中及此有联系的试题出现频率很高,应是同学们重点练习的内容。六,运用一元二次方程根的意义及根及系数的关系解题。例:,是方程的两个实数根,求的值。分析:此题可充分运用根的意义和根及系数的关系解题,应摒弃常规的求根后,再带入的方法,力求简解。解法一:由于是方程的实数根,所以设,及相加,得:〔变形目的是构造和〕依据根及系数的关系,有:于是,得:∴=0解法二:由于,是方程的实数根,
说明:既要熟识问题的常规解法,也要随时想到特别的简捷解法,是解题实力提高的重要标记,是努力的方向。有关一元二次方程根的计算问题,当根是无理数时,运算将非常繁琐,这时,假如方程的系数是有理数,利用根及系数的关系解题可起到化难为易,化繁为简的作用。这类问题在解法上敏捷多变,式子的变形具有创建性,重在考察实力,多年来始终受到命题老师的青睐。七,运用一元二次方程根的意义及判别式解题。例8:两方程和至少有一个一样的实数根,求这两个方程的四个实数根的乘积。分析:当设两方程的一样根为时,依据根的意义,可以构成关于和的二元方程组,得解后再由根及系数的关系求值。解:设两方程的一样根为,
依据根的意义,
有
两式相减,得
当时,,方程的判别式
方程无实数解
当时,有实数解
代入原方程,得,
所以
于是,两方程至少有一个一样的实数根,4个实数根的相乘积为说明:〔1〕此题的易错点为忽视对的探讨和判别式的作用,经常除了犯有默认的错误,甚至还会得出并不存在的解:当时,,两方程一样,方程的另一根也一样,所以4个根的相乘积为:;〔2〕既然此题是探讨一元二次方程的实根问题,就应首先确定方程有实根的条件:且另外还应留意:求得的的值必需满意这两个不等式才有意义。【趁热打铁】一,填空题:1,假如关于的方程的两根之差为2,那么
。2,关于的一元二次方程两根互为倒数,那么
。3,关于的方程的两根为,且,那么
。4,是方程的两个根,那么:
;5,关于的一元二次方程的两根为和,且,那么
;
。6,假如关于的一元二次方程的一个根是,那么另一个根是
,的值为
。7,是的一根,那么另一根为
,的值为
。8,一个一元二次方程的两个根是和,那么这个一元二次方程为:
。二,求值题:1,是方程的两个根,利用根及系数的关系,求的值。2,是方程的两个根,利用根及系数的关系,求的值。3,是方程的两个根,利用根及系数的关系,求的值。4,两数的和等于6,这两数的积是4,求这两数。5,关于x的方程的两根满意关系式,求的值及方程的两个根。6,方程和有一个一样的根,求的值及这个一样的根。三,实力提升题:1,实数在什么范围取值时,方程有正的实数根?2,关于的一元二次方程
〔1〕求证:无论取什么实数值,这个方程总有两个不相等的实数根。
〔2〕假设这个方程的两个实数根,满意,求的值。3,假设,关于的方程有两个相等的正的实数根,求的值。4,是否存在实数,使关于的方程的两个实根,满意,假如存在,试求出全部满意条件的的值,假如不存在,请说明理由。5,关于的一元二次方程〔〕的两实数根为,假设,求的值。6,实数,分别满意方程和,求代数式的值。答案及提示:一,填空题:1,提示:,,,∴,∴,解得:2,提示:,由韦达定理得:,,∴,解得:,代入检验,有意义,∴。3,提示:由于韦达定理得:,,∵,∴,∴,解得:。4,提示:由韦达定理得:,,;;由,可判定方程的两根异号。有两种状况:①设>0,<0,那么;②设<0,>0,那么。5,提示:由韦达定理得:,,∵,∴,,∴,∴。6,提示:设,由韦达定理得:,,∴,解得:,,即。7,提示:设,由韦达定理得:,,∴,8,提示:设所求的一元二次方程为,那么,,∴,即;;∴设所求的一元二次方程为:二,求值题:1,提示:由韦达定理得:,,∴2,提示:由韦达定理得:,,∴3,提示:由韦达定理得:,,4,提示:设这两个数为,于是有,,因此可看作方程的两根,即,,所以可得方程:,解得:,,所以所求的两个数分别是,。5,提示:由韦达定理得,,∵,∴,∴,∴,化简得:;解得:,;以下分两种状况:①当时,,,组成方程组:;解这个方程组得:;②当时,,,组成方程组:;解这个方程组得:6,提示:设和一样的根为,于是可得方程组:;①②得:,解这个方程得:;以下分两种状况:〔1〕当时,代入①得;〔2〕当时,代入①得。所以和一样的根为,的值分别为,。三,实力提升题:1,提示:方程有正的实数根的条件必需同时具备:①判别式△≥0;②>0,>0;于是可得不等式组:解这个不等式组得:>12,提示:〔1〕的判别式△>0,所以无论取什么实数值,这个方程总有两个不相等的实数根。〔2〕利用韦达定理,并依据条件可得:解这个关于的方程组,可得到:,,由于,所以可得,解这个方程,可得:,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度白酒年份酒拍卖交易合同
- 2025房产继承与分割专项服务协议书
- 二零二五电子合同规范管理与服务实施合同
- 二零二五年度房屋借住社区文化活动参与与支持协议合同范本
- 2025版建筑工程质量检测与施工验收规范合同
- 二零二五年购车奖励与保养积分奖励合同
- 2025版建筑工程施工进度监理规范与服务协议
- 二零二五版冷冻食品冷藏运输安全责任合同
- 2025版冷库仓储服务与产品分销合作协议
- 2025年物流园区专用车位使用权购买协议
- 叶酸发放知识培训课件
- 中小校长考试试题及答案
- (高清版)DB44∕T 2650-2025 网络安全合规咨询服务规范
- 中国海运拼箱行业市场发展前瞻及投资战略研究报告2025-2028版
- 2025年江苏省苏州市中考物理试卷(含答案)
- 2025年食品科学基础知识考试试题及答案
- 档案AI应用的成本效益分析与效能评估
- 中央空调项目可行性报告
- 2024ODCC-02007数据中心电能路由器应用白皮书
- 近亲属任职情况申报表
- GB/T 20145-2006灯和灯系统的光生物安全性
评论
0/150
提交评论