2024届甘肃省白银市靖远县重点中学中考数学模拟预测题含解析_第1页
2024届甘肃省白银市靖远县重点中学中考数学模拟预测题含解析_第2页
2024届甘肃省白银市靖远县重点中学中考数学模拟预测题含解析_第3页
2024届甘肃省白银市靖远县重点中学中考数学模拟预测题含解析_第4页
2024届甘肃省白银市靖远县重点中学中考数学模拟预测题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届甘肃省白银市靖远县重点中学中考数学模拟预测题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()A.5.6×10﹣1 B.5.6×10﹣2 C.5.6×10﹣3 D.0.56×10﹣12.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着B﹣E﹣D的路线匀速行进,到达点D.设运动员P的运动时间为t,到监测点的距离为y.现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是()A.监测点A B.监测点B C.监测点C D.监测点D3.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为(

)A.9人 B.10人 C.11人 D.12人4.二次函数y=a(x﹣m)2﹣n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限5.人的大脑每天能记录大约8600万条信息,数据8600用科学记数法表示为()A.0.86×104 B.8.6×102 C.8.6×103 D.86×1026.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S6,则S6的值为()A. B.2 C. D.7.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为()A.25° B.50° C.60° D.30°8.对于任意实数k,关于x的方程的根的情况为A.有两个相等的实数根 B.没有实数根C.有两个不相等的实数根 D.无法确定9.下列函数中,二次函数是()A.y=﹣4x+5 B.y=x(2x﹣3)C.y=(x+4)2﹣x2 D.y=10.在下列四个标志中,既是中心对称又是轴对称图形的是()A. B. C. D.11.已知一次函数y=kx+b的大致图象如图所示,则关于x的一元二次方程x2﹣2x+kb+1=0的根的情况是()A.有两个不相等的实数根 B.没有实数根C.有两个相等的实数根 D.有一个根是012.如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是()A.① B.③ C.②或④ D.①或③二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC中,∠B=40°,∠C=45°,AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,则∠DAE=______.14.如图,在平面直角坐标系中,以坐标原点O为位似中心在y轴的左侧将△OAB缩小得到△OA′B′,若△OAB与△OA′B′的相似比为2:1,则点B(3,﹣2)的对应点B′的坐标为_____.15.已知函数,当时,函数值y随x的增大而增大.16.某厂家以A、B两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其中,甲产品每袋含1.5千克A原料、1.5千克B原料;乙产品每袋含2千克A原料、1千克B原料.甲、乙两种产品每袋的成本价分别为袋中两种原料的成本价之和.若甲产品每袋售价72元,则利润率为20%.某节庆日,厂家准备生产若干袋甲产品和乙产品,甲产品和乙产品的数量和不超过100袋,会计在核算成本的时候把A原料和B原料的单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少500元,那么厂家在生产甲乙两种产品时实际成本最多为_____元.17.在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有_____个.18.若有意义,则x的范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC于点F,求证:AE=AF.20.(6分)列方程解应用题:某景区一景点要限期完成,甲工程队单独做可提前一天完成,乙工程队独做要误期6天,现由两工程队合做4天后,余下的由乙工程队独做,正好如期完成,则工程期限为多少天?21.(6分)如图,四边形ABCD中,∠C=90°,AD⊥DB,点E为AB的中点,DE∥BC.(1)求证:BD平分∠ABC;(2)连接EC,若∠A=30°,DC=,求EC的长.22.(8分)阅读下面材料:已知:如图,在正方形ABCD中,边AB=a1.按照以下操作步骤,可以从该正方形开始,构造一系列的正方形,它们之间的边满足一定的关系,并且一个比一个小.操作步骤作法由操作步骤推断(仅选取部分结论)第一步在第一个正方形ABCD的对角线AC上截取AE=a1,再作EF⊥AC于点E,EF与边BC交于点F,记CE=a2(i)△EAF≌△BAF(判定依据是①);(ii)△CEF是等腰直角三角形;(iii)用含a1的式子表示a2为②:第二步以CE为边构造第二个正方形CEFG;第三步在第二个正方形的对角线CF上截取FH=a2,再作IH⊥CF于点H,IH与边CE交于点I,记CH=a3:(iv)用只含a1的式子表示a3为③:第四步以CH为边构造第三个正方形CHIJ这个过程可以不断进行下去.若第n个正方形的边长为an,用只含a1的式子表示an为④请解决以下问题:(1)完成表格中的填空:①;②;③;④;(2)根据以上第三步、第四步的作法画出第三个正方形CHIJ(不要求尺规作图).23.(8分)一定数量的石子可以摆成如图所示的三角形和四边形,古希腊科学家把1,3,6,10,15,21,…,称为“三角形数”;把1,4,9,16,25,…,称为“正方形数”.将三角形、正方形、五边形都整齐的由左到右填在所示表格里:三角形数136101521a…正方形数1491625b49…五边形数151222C5170…(1)按照规律,表格中a=___,b=___,c=___.(2)观察表中规律,第n个“正方形数”是________;若第n个“三角形数”是x,则用含x、n的代数式表示第n个“五边形数”是___________.24.(10分)如图,以△ABC的边AB为直径的⊙O与边AC相交于点D,BC是⊙O的切线,E为BC的中点,连接AE、DE.求证:DE是⊙O的切线;设△CDE的面积为S1,四边形ABED的面积为S1.若S1=5S1,求tan∠BAC的值;在(1)的条件下,若AE=3,求⊙O的半径长.25.(10分)如图,已知一次函数y=x+m的图象与x轴交于点A(﹣4,0),与二次函数y=ax1+bx+c的图象交于y轴上一点B,该二次函数的顶点C在x轴上,且OC=1.(1)求点B坐标;(1)求二次函数y=ax1+bx+c的解析式;(3)设一次函数y=x+m的图象与二次函数y=ax1+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD是以BD为直角边的直角三角形,求点P的坐标.26.(12分)如图1,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+bx+3交x轴于B、C两点(点B在左,点C在右),交y轴于点A,且OA=OC,B(﹣1,0).(1)求此抛物线的解析式;(2)如图2,点D为抛物线的顶点,连接CD,点P是抛物线上一动点,且在C、D两点之间运动,过点P作PE∥y轴交线段CD于点E,设点P的横坐标为t,线段PE长为d,写出d与t的关系式(不要求写出自变量t的取值范围);(3)如图3,在(2)的条件下,连接BD,在BD上有一动点Q,且DQ=CE,连接EQ,当∠BQE+∠DEQ=90°时,求此时点P的坐标.27.(12分)如图,在△ABC中,∠B=∠C=40°,点D、点E分别从点B、点C同时出发,在线段BC上作等速运动,到达C点、B点后运动停止.求证:△ABE≌△ACD;若AB=BE,求∠DAE的度数;拓展:若△ABD的外心在其内部时,求∠BDA的取值范围.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】

0.056用科学记数法表示为:0.056=,故选B.2、C【解析】试题解析:、由监测点监测时,函数值随的增大先减少再增大.故选项错误;、由监测点监测时,函数值随的增大而增大,故选项错误;、由监测点监测时,函数值随的增大先减小再增大,然后再减小,选项正确;、由监测点监测时,函数值随的增大而减小,选项错误.故选.3、C【解析】

设参加酒会的人数为x人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【详解】设参加酒会的人数为x人,依题可得:

x(x-1)=55,

化简得:x2-x-110=0,

解得:x1=11,x2=-10(舍去),

故答案为C.【点睛】考查了一元二次方程的应用,解题的关键是根据题中的等量关系列出方程.4、A【解析】

由抛物线的顶点坐标在第四象限可得出m>0,n>0,再利用一次函数图象与系数的关系,即可得出一次函数y=mx+n的图象经过第一、二、三象限.【详解】解:观察函数图象,可知:m>0,n>0,∴一次函数y=mx+n的图象经过第一、二、三象限.故选A.【点睛】本题考查了二次函数的图象以及一次函数图象与系数的关系,牢记“k>0,b>0⇔y=kx+b的图象在一、二、三象限”是解题的关键.5、C【解析】

科学记数法就是将一个数字表示成a×10的n次幂的形式,其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【详解】数据8600用科学记数法表示为8.6×103故选C.【点睛】用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).6、C【解析】

根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.【详解】如图所示,单位圆的半径为1,则其内接正六边形ABCDEF中,△AOB是边长为1的正三角形,所以正六边形ABCDEF的面积为S6=6××1×1×sin60°=.故选C.【点睛】本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n边形的性质解答.7、A【解析】如图,∵∠BOC=50°,∴∠BAC=25°,∵AC∥OB,∴∠OBA=∠BAC=25°,∵OA=OB,∴∠OAB=∠OBA=25°.故选A.8、C【解析】判断一元二次方程的根的情况,只要看根的判别式的值的符号即可:∵a=1,b=,c=,∴.∴此方程有两个不相等的实数根.故选C.9、B【解析】A.y=-4x+5是一次函数,故此选项错误;B.

y=x(2x-3)=2x2-3x,是二次函数,故此选项正确;C.

y=(x+4)2−x2=8x+16,为一次函数,故此选项错误;D.

y=是组合函数,故此选项错误.故选B.10、C【解析】

根据轴对称图形与中心对称图形的概念对各选项分析判断利用排除法求解.【详解】解:A、不是中心对称图形,是轴对称图形,故本选项错误;B、既不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误.故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.11、A【解析】

判断根的情况,只要看根的判别式△=b2−4ac的值的符号就可以了.【详解】∵一次函数y=kx+b的图像经过第一、三、四象限∴k>0,b<0∴△=b2−4ac=(-2)2-4(kb+1)=-4kb>0,∴方程x2﹣2x+kb+1=0有两个不等的实数根,故选A.【点睛】根的判别式12、D【解析】

分两种情形讨论当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,由此即可解决问题.【详解】分两种情况讨论:①当点P顺时针旋转时,BP的长从增加到2,再降到0,再增加到,图象③符合;②当点P逆时针旋转时,BP的长从降到0,再增加到2,再降到,图象①符合.故答案为①或③.故选D.【点睛】本题考查了动点问题函数图象、圆的有关知识,解题的关键理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、10°【解析】

根据线段的垂直平分线得出AD=BD,AE=CE,推出∠B=∠BAD,∠C=∠CAE,求出∠BAD+∠CAE的度数即可得到答案.【详解】∵点D、E分别是AB、AC边的垂直平分线与BC的交点,∴AD=BD,AE=CE,∴∠B=∠BAD,∠C=∠CAE,∵∠B=40°,∠C=45°,∴∠B+∠C=85°,∴∠BAD+∠CAE=85°,∴∠DAE=∠BAC-(∠BAD+∠CAE)=180°-85°-85°=10°,故答案为10°【点睛】本题主要考查对等腰三角形的性质,三角形的内角和定理,线段的垂直平分线的性质等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键.14、(-,1)【解析】

根据如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k进行解答.【详解】解:∵以原点O为位似中心,相似比为:2:1,将△OAB缩小为△OA′B′,点B(3,−2)则点B(3,−2)的对应点B′的坐标为:(-,1),故答案为(-,1).【点睛】本题考查了位似变换:位似图形与坐标,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.15、x≤﹣1.【解析】试题分析:∵=,a=﹣1<0,抛物线开口向下,对称轴为直线x=﹣1,∴当x≤﹣1时,y随x的增大而增大,故答案为x≤﹣1.考点:二次函数的性质.16、5750【解析】

根据题意设甲产品的成本价格为b元,求出b,可知A原料与B原料的成本和40元,然后设A种原料成本价格x元,B种原料成本价格(40﹣x)元,生产甲产品m袋,乙产品n袋,列出方程组得到xn=20n﹣250,最后设生产甲乙产品的实际成本为W元,即可解答【详解】∵甲产品每袋售价72元,则利润率为20%.设甲产品的成本价格为b元,∴=20%,∴b=60,∴甲产品的成本价格60元,∴1.5kgA原料与1.5kgB原料的成本和60元,∴A原料与B原料的成本和40元,设A种原料成本价格x元,B种原料成本价格(40﹣x)元,生产甲产品m袋,乙产品n袋,根据题意得:,∴xn=20n﹣250,设生产甲乙产品的实际成本为W元,则有W=60m+40n+xn,∴W=60m+40n+20n﹣250=60(m+n)﹣250,∵m+n≤100,∴W≤6250;∴生产甲乙产品的实际成本最多为5750元,故答案为5750;【点睛】此题考查不等式和二元一次方程的解,解题关键在于求出甲产品的成本价格17、1.【解析】

由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.【详解】设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴44+x=1解得:x=1,故白球的个数为1个.故答案为:1.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.18、x≤1.【解析】

根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式即可.【详解】依题意得:1﹣x≥0且x﹣3≠0,解得:x≤1.故答案是:x≤1.【点睛】本题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数必须是非负数,分式有意义的条件是分母不等于零.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、见解析【解析】

根据角平分线的定义可得∠ABF=∠CBF,由已知条件可得∠ABF+∠AFB=∠CBF+∠BED=90°,根据余角的性质可得∠AFB=∠BED,即可求得∠AFE=∠AEF,由等腰三角形的判定即可证得结论.【详解】∵BF平分∠ABC,∴∠ABF=∠CBF,∵∠BAC=90°,AD⊥BC,∴∠ABF+∠AFB=∠CBF+∠BED=90°,∴∠AFB=∠BED,∵∠AEF=∠BED,∴∠AFE=∠AEF,∴AE=AF.【点睛】本题考查了等腰三角形的判定、直角三角形的性质,根据余角的性质证得∠AFB=∠BED是解题的关键.20、15天【解析】试题分析:首先设规定的工期是x天,则甲工程队单独做需(x-1)天,乙工程队单独做需(x+6)天,根据题意可得等量关系:乙工程队干x天的工作量+甲工程队干4天的工作量=1,根据等量关系列出方程,解方程即可.试题解析:设工程期限为x天.根据题意得,解得:x=15.经检验x=15是原分式方程的解.答:工程期限为15天.21、(1)见解析;(2).【解析】

(1)直接利用直角三角形的性质得出,再利用DE∥BC,得出∠2=∠3,进而得出答案;(2)利用已知得出在Rt△BCD中,∠3=60°,,得出DB的长,进而得出EC的长.【详解】(1)证明:∵AD⊥DB,点E为AB的中点,∴.∴∠1=∠2.∵DE∥BC,∴∠2=∠3.∴∠1=∠3.∴BD平分∠ABC.(2)解:∵AD⊥DB,∠A=30°,∴∠1=60°.∴∠3=∠2=60°.∵∠BCD=90°,∴∠4=30°.∴∠CDE=∠2+∠4=90°.在Rt△BCD中,∠3=60°,,∴DB=2.∵DE=BE,∠1=60°,∴DE=DB=2.∴.【点睛】此题主要考查了直角三角形斜边上的中线与斜边的关系,正确得出DB,DE的长是解题关键.22、(1)①斜边和一条直角边分别相等的两个直角三角形全等②(﹣1)a1;③(-1)2a1;④(-1)n-1a1;(2)见解析.【解析】

(1)①由题意可知在Rt△EAF和Rt△BAF中,AE=AB,AF=AF,所以Rt△EAF≌Rt△BAF;②由题意得AB=AE=a1,AC=a1,则CE=a2=a1﹣a1=(﹣1)a1;③同上可知CF=CE=(-1)a1,FH=EF=a2,则CH=a3=CF﹣FH=(-1)2a1;④同理可得an=(-1)n-1a1;(2)根据题意画图即可.【详解】解:(1)①斜边和一条直角边分别相等的两个直角三角形全等;理由是:如图1,在Rt△EAF和Rt△BAF中,∵,∴Rt△EAF≌Rt△BAF(HL);②∵四边形ABCD是正方形,∴AB=BC=a1,∠ABC=90°,∴AC=a1,∵AE=AB=a1,∴CE=a2=a1﹣a1=(﹣1)a1;③∵四边形CEFG是正方形,∴△CEF是等腰直角三角形,∴CF=CE=(-1)a1,∵FH=EF=a2,∴CH=a3=CF﹣FH=(-1)a1﹣(-1)a1=(-1)2a1;④同理可得:an=(-1)n-1a1;故答案为①斜边和一条直角边分别相等的两个直角三角形全等②(﹣1)a1;③(-1)2a1;④(-1)n-1a1;(2)所画正方形CHIJ见右图.23、123n2n2+x-n【解析】分析:(1)、首先根据题意得出前6个“三角形数”分别是多少,从而得出a的值;前5个“正方形数”分别是多少,从而得出b的值;前4个“正方形数”分别是多少,从而得出c的值;(2)、根据前面得出的一般性得出答案.详解:(1)∵前6个“三角形数”分别是:1=、3=、6=、10=、15=、21=,

∴第n个“三角形数”是,∴a=7×82=17×82=1.

∵前5个“正方形数”分别是:1=12,4=22,9=32,16=42,25=52,

∴第n个“正方形数”是n2,∴b=62=2.

∵前4个“正方形数”分别是:1=,5=,12=,22=,

∴第n个“五边形数”是n(3n−1)2n(3n−1)2,∴c==3.

(2)第n个“正方形数”是n2;1+1-1=1,3+4-5=2,6+9-12=3,10+16-22=4,…,

∴第n个“五边形数”是n2+x-n.点睛:此题主要考查了图形的变化类问题,要熟练掌握,解答此类问题的关键是首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.24、(1)见解析;(1)tan∠BAC=;(3)⊙O的半径=1.【解析】

(1)连接DO,由圆周角定理就可以得出∠ADB=90°,可以得出∠CDB=90°,根据E为BC的中点可以得出DE=BE,就有∠EDB=∠EBD,OD=OB可以得出∠ODB=∠OBD,由等式的性质就可以得出∠ODE=90°就可以得出结论.(1)由S1=5S1可得△ADB的面积是△CDE面积的4倍,可求得AD:CD=1:1,可得.则tan∠BAC的值可求;(3)由(1)的关系即可知,在Rt△AEB中,由勾股定理即可求AB的长,从而求⊙O的半径.【详解】解:(1)连接OD,∴OD=OB∴∠ODB=∠OBD.∵AB是直径,∴∠ADB=90°,∴∠CDB=90°.∵E为BC的中点,∴DE=BE,∴∠EDB=∠EBD,∴∠ODB+∠EDB=∠OBD+∠EBD,即∠EDO=∠EBO.∵BC是以AB为直径的⊙O的切线,∴AB⊥BC,∴∠EBO=90°,∴∠ODE=90°,∴DE是⊙O的切线;(1)∵S1=5S1∴S△ADB=1S△CDB∴∵△BDC∽△ADB∴∴DB1=AD•DC∴∴tan∠BAC==.(3)∵tan∠BAC=∴,得BC=AB∵E为BC的中点∴BE=AB∵AE=3,∴在Rt△AEB中,由勾股定理得,解得AB=4故⊙O的半径R=AB=1.【点睛】本题考查了圆周角定理的运用,直角三角形的性质的运用,等腰三角形的性质的运用,切线的判定定理的运用,勾股定理的运用,相似三角形的判定和性质,解答时正确添加辅助线是关键.25、(1)B(0,1);(1)y=0.5x1﹣1x+1;(3)P1(1,0)和P1(7.15,0);【解析】

(1)根据y=0.5x+m交x轴于点A,进而得出m的值,再利用与y轴交于点B,即可得出B点坐标;(1)二次函数y=ax1+bx+c的图象与x轴只有唯一的交点C,且OC=1.得出可设二次函数y=ax1+bx+c=a(x﹣1)1,进而求出即可;(3)根据当B为直角顶点,当D为直角顶点时,分别利用三角形相似对应边成比例求出即可.【详解】(1)∵y=x+1交x轴于点A(﹣4,0),∴0=×(﹣4)+m,∴m=1,与y轴交于点B,∵x=0,∴y=1∴B点坐标为:(0,1),(1)∵二次函数y=ax1+bx+c的图象与x轴只有唯一的交点C,且OC=1∴可设二次函数y=a(x﹣1)1把B(0,1)代入得:a=0.5∴二次函数的解析式:y=0.5x1﹣1x+1;(3)(Ⅰ)当B为直角顶点时,过B作BP1⊥AD交x轴于P1点由Rt△AOB∽Rt△BOP1∴,∴,得:OP1=1,∴P1(1,0),(Ⅱ)作P1D⊥BD,连接BP1,将y=0.5x+1与y=0.5x1﹣1x+1联立求出两函数交点坐标:D点坐标为:(5,4.5),则AD=,当D为直角顶点时∵∠DAP1=∠BAO,∠BOA=∠ADP1,∴△ABO∽△AP1D,∴,,解得:AP1=11.15,则OP1=11.15﹣4=7.15,故P1点坐标为(7.15,0);∴点P的坐标为:P1(1,0)和P1(7.15,0).【点睛】此题主要考查了二次函数综合应用以及求函数与坐标轴交点和相似三角形的与性质等知识,根据已知进行分类讨论得出所有结果,注意不要漏解.26、(1)y=﹣x2+2x+3;(2)d=﹣t2+4t﹣3;(3)P(,).【解析】

(1)由抛物线y=ax2+bx+3与y轴交于点A,可求得点A的坐标,又OA=OC,可求得点C的坐标,然后分别代入B,C的坐标求出a,b,即可求得二次函数的解析式;(2)首先延长PE交x轴于点H,现将解析式换为顶点解析式求得D(1,4),设直线CD的解析式为y=kx+b,再将点C(3,0)、D(1,4)代入,得y=﹣2x+6,则E(t,﹣2t+6),P(t,﹣t2+2t+3),PH=﹣t2+2t+3,EH=﹣2t+6,再根据d=PH﹣EH即可得答案;(3)首先,作DK⊥OC于点K,作QM∥x轴交DK于点T,延长PE、EP交OC于H、交QM于M,作ER⊥DK于点R,记QE与DK的交点为N,根据题意在(2)的条件下先证明△DQT≌△ECH,再根据全等三角形的性质即可得ME=4﹣2(﹣2t+6),QM=t﹣1+(3﹣t),即可求得答案.【详解】解:(1)当x=0时,y=3,∴A(0,3)即OA=3,∵OA=OC,∴OC=3,∴C(3,0),∵抛物线y=ax2+bx+3经过点B(﹣1,0),C(3,0)∴,解得:,∴抛物线的解析式为:y

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论