Interval Analysis and its Applications to Optimization in  区间分析及其在优化中的应用_第1页
Interval Analysis and its Applications to Optimization in  区间分析及其在优化中的应用_第2页
Interval Analysis and its Applications to Optimization in  区间分析及其在优化中的应用_第3页
Interval Analysis and its Applications to Optimization in  区间分析及其在优化中的应用_第4页
Interval Analysis and its Applications to Optimization in  区间分析及其在优化中的应用_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGE

PAGE

1

IntervalAnalysisanditsApplicationstoOptimizationinBehaviouralEcology

by

JustinTung

CS490IndependentResearchReport

Instructor:DavidSchwartz

Date:December19,2001

TableofContents

Abstract 4

Introduction 5

IntervalAnalysis 5

BasicsandNotation 5

UncertaintyandApproximatingValues 5

IntervalArithmeticandFunctions 6

ForagingTheory 7

BasicsofForagingModels 7

SimplisticAnalyticForagingModel 8

TheOptimalResidenceTime 11

2.ResearchProblemandMethods 12

Motivation 12

ProblemswithFixedPointOptimizationinForagingModels 12

IntervalAnalysisasUncertaintyinMethod 13

ResearchProblem 13

Software 14

Methodology 14

Fixed-PointAnalysis 14

GeneralMethod 14

Algorithm:BisectionMethod 15

IntervalAnalysis 16

GeneralMethod 16

Algorithm:IntervalNewton’sMethod 16

VariationandConstraintsonParameters 17

3.NumericalAnalysisofModel 18

FixedPointAnalysis 18

GraphicalAnalysis 18

OptimizationandAnalysis 23

IntervalAnalysis 26

TrueSolutionsandIntervalOptimization 26

StabilityAnalysis 29

4.ConclusionsandFutureExploration 30

ResultsofNumericalStudy 30

ComparisonofFixedPointandIntervalRoots 30

ApplicationstoForagingModel 30

FutureExploration 32

Bibliography 33

Abstract

IntervalAnalysisisameansofrepresentinguncertaintybyreplacingsingle(fixed-point)valueswithintervals.Inthisproject,intervalanalysisisappliedtoaforagingmodelinbehaviouralecology.Themodeldescribesanindividualforaginginacollectionofcontinuouslyrenewingresourcepatches.Thismodelisusedtodeterminetheoptimalresidencetimeoftheforagerinaresourcepatchassumingtheforagerwantstomaximizeitsrateofresourceintake.Beforeapplyingintervalanalysis,fixed-point(non-interval)optimizationwillbedonetoserveasabasis.Certainparametersinthemodelwillthenbereplacedwithintervalsandinterval-basedoptimizationconducted.Acomparisonoftheintervalandfixed-pointresultswillbedoneaswellasanalysisofparameterintervalsandtheirconstraints,rootapproximations,andapplicationstothemodel.

Chapter1:Introduction

1.1IntervalAnalysis

1.1.1BasicsandNotation

ThispaperwillexplainonlythebasicsofIntervalAnalysis(IA)neededtounderstandthetopicscoveredandassumessomepriorknowledgeofIAandMatlab(see2.1.4regardingMatlab).ForaformalmathematicalintroductionandindepthcoverageofconceptsseeSchwartz(1999)orMoore(1966)listedinthereferences.Intervalanalysiswasinitiallydevelopedinthelate1960’stoboundcomputationalerroranditisadeterministicwayofrepresentinguncertaintyinvaluesbyreplacinganumberwitharangeofvalues(Schwartz17).Fixed-pointanalysisissimplyanalysisusingnon-intervalvalueswherethereisnouncertaintyinthevalues.Asaresult,IAuncertaintyconceptscanbeusedtomodelvaryingbiologicalparametersintheecologicalmodeltobeexploredinsection1.2andalsotoframefixed-pointresults.

IA’smathematicaldefinitionsandnotationsareextendedfromsettheoryandorderednumericalsetscalledintervals(Schwartz30).Thispaperconsidersclosedintervalanalysiswiththefollowingdefinitionsofaninterval(usingMatlabupperbound,lowerboundstylenotation):

inf(x)–denotestheinfinum,orlowerboundofx

sup(x)–denotesthesupremumorupperboundofx

1.1.2UncertaintyandApproximatingValues

Thereareaseveralusefulquantitiesrelatedtotheconceptoftheinterval:size,radius,andmidpoint.Thesize(orthickness)ofanintervalindicatestheuncertaintyinavalueandisspecifiedasawidth:w(x)=sup(x)-inf(x)(Schwartz32-33).Intervalswithzerothicknessarecrispintervalswhereasnon-crispintervalssaidtobethick.Theconceptsofradiusandmidpointareusefulindescribingintervalsaswellasconstructingthem.Theradiusandmidpointaredefinedas(Schwartz33):

rad(x)=w(x)/2

mid(x)=(sup(x)+inf(x))/2

Toconstructanewinterval,onewayistouseanoriginalvalue,whichisavaluethatsuppliesthemidpointpointofanewinterval.Then,acertainradius(uncertainty)canbeaddedtoandsubtractedfromtheoriginalvaluetoobtainanewinterval(Schwartz35).Similarly,themidpointcanalsoserveasanapproximationtoavaluewithanerrorofplusorminustheradius.Usingthesedefinitions,thepercentageuncertaintyinamidpointvaluewouldbe:p=100*rad(x)/mid(x)(Schwartz148).

1.1.3IntervalArithmeticandFunctions

Theresultsandpropertiesofintervalarithmeticwillbeomittedforthissection;however,IrecommendreferringtoSchwartz(1999)tounderstandthebasicsofintervalarithmetic.Thefundamentalprinciplesinintervaloperationsareindependenceandextremes.Independencemeansnumericalvaluesvaryindependentlybetweenintervalsandextremesmeansintervaloperationsgeneratethewidestpossibleboundsgiventherangesofvalues(Schwartz37-38).Interval-valuedfunctionsfollowfromintervalarithmeticofwhichtherearetwotypes:intervalextensionsandunitedextensions(ortruesolutionsets).Intervalextensionsarefunctionswhereintervalarithmeticisappliedtocalculateresults.Unitedextensionsaremorecomputationallyintensiveandinvolvecalculatingfixed-pointresultswithallpossiblecombinationsofvariableintervalendpoints.Thedisadvantageoftheintervalextensionsisthattheycanoverexpandthetruesolutionsetsofafunction(Schwartz45-49).Thisqualityofintervalextensionsisunfortunatesincebothtypesofextensionsguaranteecontainmentofallpossiblenumericalresultsofthefunctiongiventheinputs.Also,bothextensionssatisfyapropertycalledinclusionmonotonicity(giveninputs,anextensiongeneratesthewidestpossiblebounds),whichissimilartotheextremesprincipleofintervalarithmetic(Schwartz56).

1.2ForagingTheory

1.2.1BasicsofForagingModels

Foragingmodelsingeneralstudytwobasicproblemsofaforager:whichfood/preyitemstoconsumeandwhentoleaveanareacontainingfood(aresourcepatch).Thispaperwillconcentrateonthelatterasanoptimizationproblem.Beforegoingintodetailsofthemodel,itisimportanttounderstandtheframeworkofforagingmodels.StephensandKrebspointoutthatforagingandoptimalitymodelshavethreemaincomponents,decision,currency,andconstraintassumptions(5).Decisionassumptionsdeterminewhichproblems(orchoices)oftheforageraretobeanalyzedandthesechoicesareusuallyexpressedasvariables.Theoptimizationproblemcomesfromassumingbehaviourandevolutionarymechanismsoptimizetheoutcomeofaforager’schoices.Currencyassumptionsprovidemeansofevaluatingchoices.Thesechoicesusuallyinvolvemaximization,minimization,orstabilityofasituation.Choiceevaluationisembodiedinthecurrencyfunction(arealvaluedfunction),whichtakesthedecisionvariablesandevaluatestheiroutcomeintoasinglevalue.Constraintassumptionsarelimitationstothemodelandrelatedecisionvariableswiththecurrency.Limitationscanbegeneralizedto2types,extrinsic(environmentlimitsonanimal)andintrinsic(animal’sownlimitations).Also,therearethreegeneralconstraintassumptions(alsoassumedbythemodelinsection1.2.2)forconventionalforagingmodels:

1)Exclusivityofsearchandexploitation–thepredatorcanonlyconsumeorsearchforpatches/preyandnotperformbothactionsarethesametime

2)SequentialPoissonencounters–items(preyorpatches)areencounteredoneatatimeandthereisaconstantprobabilityregardingprey/patchmeetingsinashorttimeperiod

3)Completeinformation–theforagerbehavesasifitknowstherulesofthemodel

Thesethreeconceptsofdecision,currency,andconstraintprovidemeansofoptimizationgivenchoices,howtodeterminetheirsuccess,andlimitations(StephensandKrebs6-11).

1.2.2SimplisticAnalyticForagingModel

Giventhestructureofaforagingmodel,itiseasytoframeamodelexaminingtheforagingofasingleanimaloveracollectionofdistinctresourcepatches.Ihavetakenthemodelalongwithitsdecision,currency,andconstraintassumptionsfromWilson(2000)soderivationsofthemodel’sequations,itsorigins,andananalysisandextensionsofthemodelinCcanbefoundinhisbook.Therulesoftheforagerinthemodelarethattheanimalstaysforafixedtimebeforemovingtoanewresourcepatch,timeisdiscrete,andpatchresourcevalues(biomass,energy,etc)growlogistically.Thedecisionassumptionliesinthedeterminationofthefixedtimevalue.Thecurrencyfunctionallowsustooptimizetheanimal’ssituationgiventhisfixedtimeandalsoallowsustoapplyconstraintstothemodel(Wilson152).Despiteitsname,thesimplisticanalyticforagingmodelactuallycharacterizesforagingsimulationresultswellusingthemodel’sspecifications.Hereisalistofparameterstakeninbythemodel:

Toderivethemodel,wecanstartanalyzingtheresourcesideassumingthattheithpatchwithouttheforagerconsuminggrowslogistically:

Wheretistimeandriistheamountofresourcesintheithpatch.Ifaforagerentersagivenpatchf,resourcedynamicscanbemodeledasfollows:

Inthefthpatch,theconsumerdecreasestherateofgrowthbyafactorrelatedtobeta,theconsumingrate.Tomodeloverallpatchgrowth,averagepatchgrowthforN-1identicalpatchesisaddedtothepatchgrowth(ordecay)ofthefthpatch:

Toachieveanequilibriumresourcedensityr*,wesetdr/dt=0andsolveforryielding:

AquickanalysisofthelimitasNapproachesinfinityshowsthattheforager’seffectisinsignificantatequilibriumsincethetermcontainingbetagoestozeroandr*goestoKasexpected(Wilson153-154).Theresourcesideprovidesuswithanenvironmentandextrinsicconstraintsthatwillaffectthecurrencyfunctionwhichliesontheforagersideofthemodel.Keytoresourceexploitationmodelsisthegainfunction,g(t).Thegainfunctionspecifiestheamountconsumedfromaresourcepatchgiventimet.Assumingtheforagerlandsonaresourcepatchalwaysinequilibriumr*,g(t)isthetimeintegralofitsinstantaneousconsumptionrateminusitsmetaboliccosts.Metaboliccostsrepresentintrinsicconstraintssincetheanimalmust“pay”thesecostswhenforaging.

Thextandxmconstraintsactasintrinsiclimitationsonthemodelsincethetravelingcostspreventstheforagerfrommovingquicklyfrompatchtopatchandskimmingresources,whilethemetaboliccostcausestheforagertogatherresourcesforthreatofdeath.Inordertoevaluateg(t),werequireananalyticalsolutiontorf,whichmeasurestheresourcesinthepatchtheforagerisin.Solvingthefirstorderdifferentialequationfromtheresourcesidederivationsforrfusingseparationofvariablesyields:

Thensubstitutingthisequationintog(t)andsolvingtheintegralweget:

Usingthisgainfunction,thecrucialequationfromtheforagerperspective,thenetforagingratefunctioncanbecalculatedas:

R(t)isthecurrencyfunctionforourmodelsinceitisthebasisofchoiceevaluationandoptimizationforthemodel(Wilson154-155).Italsocombinesthedecisionvariablesandconstraintsintoonevalueandwillbeabasisforgraphicalanalysislateron.

1.2.3TheOptimalResidenceTime

Assumingbehaviouralandevolutionarymechanismsdriveforagerstooptimizethetimespentoneachpatch.Thisassumptionimpliesthattheywillstaylongenoughtooptimizetherateofresourceconsumption,r(t).Mathematically,thischoiceimpliesthemaximizationofr(t):

wheret*iscalledtheoptimalresidencetime.Forratemaximization,r’’(t*)<0mustalsobechecked;however,assumingr(t*)isatamaximum,weobtaintheequation:

whichrelatesr(t)tothederivativeofthegainfunction.Thesecondfunctionaboveisthefunctiontobeusedforrootfinding.Essentially,theoptimaltimetoleaveapatchiswhentheexpectedrateofresourcereturndecreasestotheaveragerateofreturnofanewpatch.Thisresult,whichisastatementofthemarginalvaluetheoremforforaging,isareasonableestimationofanimalbehaviourconsideringaforager’sdesiretomaximizeonitsresourceintake(Wilson156-157).Oneprobleminoptimizationproblemsisfiguringoutwhetheranoptimalpointexistsandinthiscase,wemustbesurer’’(t*)<0andbesuresuchat*exists.Unfortunately,duetothecomplexityofg(t)isitnotpossibletosolveforanexplicitsolutionoft*sotojustifyexistenceofasolution,weturntotheoreticaljustificationsand,laterinsection3.1.1,graphicalmeans.Duetotheconditionsspecifiedinforagingmodels,gainfunctionsare“well-defined,continuous,deterministic,andnegativelyaccelerated”functions(StephensandKrebs25-26).Thisoutcomeresultsfromassumingpatchresourcesaresufficient(i.e.theequilibriumresourceissufficientlylarge)enoughthat,whentheforagerentersapatch,r(t)willreachamaximumandthendecreaseuntilthegainfunctionreachesanasymptoticmaximumwhenfurthertimespentintheresourcepatchdoesnotyieldsignificantlymoregaininresources.Thereasonforthegainfunction’spropertiesistheassumptionthatpatchescontainafinitenumberofresourcesandforagingdepletesthem.Thisassumption;however,reliesontheassumptionsaboutresidencetime,foragingrates,andresourcepatchdynamicsingeneral(StephensandKrebs25-26).Duetothesimplenatureofthemodel,thesegainfunctionpropertiesholdsor(t)doesreachamaximumatt*andr’’(*t)<0.

Chapter2:ResearchProblemsandMethods

2.1Motivation

2.1.1ProblemswithFixedPointOptimizationinForagingModels

StephensandKrebs(1986)discussvariouslimitationsandcriticismsofbehaviouralecologyoptimalitymodels.Onecriticismhastodowith“staticversusdynamic”modelingsincebasicforagingmodelsoftendonottaketheanimal’sstateintoaccount(i.e.whetherananimalisstarvingorfullyrestedandfed)(StephensandKrebs34).Also,aproblemthatoccursduringtestingphasesofamodeliswhenitbreaksdown.Atthatpoint,theecologistmustre-analyzethemodeltofindwhatisincorrect,oftencheckingconstraints(StephensandKrebs208)

2.1.2IntervalAnalysisasanUncertaintyMethod

IAcanaddressbutnotcompletelysolvetheproblemsstatedabove.OneofthestrengthsofIAisitsabilitytoevaluateawholerangeofvaluesinonecalculationthatwouldtakeaninfinitenumberoffixed-pointcalculationstoproduce.Asaresult,IAcouldsimulatethepresenceofmultiplestatesofananimaland/oritsenvironmentbyplacinguncertaintyinthemodel’sparameters.Thismethodprovideseasydeterministicimplementationofmultiplestatemodelsandproducesrangesofvaluesforevaluation.Thismethodpartiallyaddressesthesecondproblemofwhenamodelbreaksdown.Amodelcouldbreakdownduetoincorrectassumptionsaboutconstantforagerorenvironmentstates.AnotherapplicationofIAtotestingisthatIAisnumericallysuperiorwhenitcomestotestingdifferentacceptableuncertaintiesinvaluescouldhelpidentifyproblemsinthemodelorunrealisticassumptions.

2.1.3ResearchProblem

ThepurposeofthispaperistointroduceIAmethodstothesimplisticanalyticforagingmodelandcalculateintervaloptimalresidencetimesforintervalparameters.Atsametime,solvingthefixedpointoptimalresidencetimewillprovideframeworkfromwhichtoanalyzetheintervalresults.TheoptimizationwillbedoneforpatchsizesN=3,5,10,and20.Theparameterswithuncertaintywillbe:

Theseuncertaintiescouldbestrengthenedwithfieldworkstudies;however,forsimplicitytheyaredeterminedapriori.Aftercomputingintervaloptimalresidencetimes,theintervalsandtheirfixed-pointapproximationswillbecomparedtothefixed-pointoptimaltimestocomparealgorithmsandtoanalyzethefunctions’behaviourunderbothmethods.Onamoretheoreticalside,stabilityanalysisofthemodelwillbeconducted.Thisanalysisinvolvesvaryingoneuncertainparameter,whileholdingtheothersconstantuntilthemodelfails.Therefore,stabilityanalysisisusedtoseeperformanceofthemodelunderparameteruncertaintyperturbations.Conditionsforfailurewillbespecifiedinsection.

2.1.4Software

ThelanguagetobeusedisMatlabversion5.3withanadd-ontoolboxcalledINTLABprogrammedbySiegfriedRump(2001).RefertothereferencesfordocumentationontheINTLABtoolbox.Forthispaper,theINTLABtoolboxisusedtoprovideintervaldatastructures,implementationofintervalarithmeticandinterval-valuedfunctions,aswellasbasicfunctionsforradius,midpoint,andintersectionintervalfunctionsinMatlab.

2.2Methodology

2.2.1Fixed-PointAnalysis

GeneralMethod

Rootfunc(t)specifiedbelowisthefunctionwhoserootweareseeking:

Sincerootfunc(t)hasrelativelycheapfunctionevaluationsitisusefultoperforma“graphicalsearch”fortheroot(VanLoan294).Thisprocedureinvolvesplottingthefunctioninthetimeintervalofinterestandexaminingitsroots.Inadditiontothisfunction,duringthefixed-pointanalysis,wewillalsoplotr(t)tosearchfortheexistenceofmaximumsaswellasrootfunc’’(t)toconfirmthatrootfunc’’(t)isindeednegativeintheintervalofinterest.Although,graphicalsearchesarerathertrivial,theyprovidealargeamountofinformationconfirmingtheoreticalconclusionsinsection1.2aswellasenablingapictorialviewoftheobjectiveandrelatedfunctions.Anotheruseoftheplottingoffunctionsbeforeoptimizationistousetheplotstogeneratestartingintervalsforiterationsofrootfindingmethods.Inordertoplotrootfunc,r(t),andr’’(t)itisnecessarytoimplementequationsforg(t),g’(t),andr’’(t).Thedetailsforcalculatingg’(t)andr’’(t)areleftoutsinceg(t)isarathermessyfunction,butthederivativesareimplementedintheMatlabcodeforsection3.1.1.Assumingthepropertiesofthegainfunctiondiscussedin1.2.3,whichwillbeconfirmedinsection3.1.1,itisnecessarytochooseanalgorithmthatwillproducearootgiventheconditionsofrootfunc(t).

Algorithm:BisectionMethod

Sincerootfunc(t)iscontinuousandchangessignwithintheintervalofinterest,thebisectionmethodcanbeused.Thismethodinvolvescalculatingasequenceofsmallerandsmallerintervalsthatbracket(contain)therootofrootfunc(t).Themainalgorithmproceedsasfollows(ifrootfunct(t)=f(t))givenabracketinginterval[a,b]:

assumef(a)f(b)0andletm=(a+b)/2

eitherf(a)f(m)0orf(m)f(b)0

inthefirstcaseweknowtherootisin[a,m]elseitisit[m,b]

Ineithersituation,thesearchintervalishalvedandthisprocesscanbecontinueduntilasmallenoughintervalisobtained.Sincethesearchintervalishalvedwitheachiteration,thebisectionmethodexhibitsO(n)convergence.Theonlytrickypointsaretooptimizethemethodsothatonlyonefunctionevaluationisrequiredperiterationafterthefirstandtoestablishasafeconvergencecriterionsothatthetoleranceintervalisnotsmallerthanthegapinthefloatingpointnumbersbetweenaandb.VanLoanprovidesthecoreofthecodeforthebisectionmethodwithslightmodificationstofittheparametersofthemodel(280).AlthoughthebisectionmethoddoesnotexperienceO(n^2)convergenceliketheNewtonmethod,rootfunc(t)issimpleenoughthatitconvergesquicklyforpracticalpurposes.Also,itissimple(algorithmicallyanddoesn’trequirerootfunc’(t)implementation)andtranslateswellintotheideaofsearchingusingastartinginterval[a,b],whichwewilluselaterintheintervalrootfinding.

2.2.2IntervalAnalysis

GeneralMethod

Whenchangingfromfixed-pointtointervalbasedrootfindingtherearesomeimmediatedifferences.Therootisnolongeracrispintervalsinceiterationsusinganinterval-valuedfunctionproduceintervals.Asaresult,convergencecriterionsandthegeneralmethodsofrootfindingmusthaveasetvaluedapproach.Becausetheoptimalresidencetimeswillinherentlybethickintervalssincetherootfunc(t)isnowanintervalfunctionwithuncertainparameters,convergencewillbesolvedsimplebysettingamaximumnumberofiterations.ThereasonthisconvergenceguaranteesanenclosureoftherootisduetotheIntervalNewtonmethod,whichisbasedonthefixed-pointone.

IntervalNewtonMethod

Fordetailsofthemathandconvergencepropertiesofthealgorithm,refertoKulischetal.(2001).Thisalgorithm,whenfindingrootsoffixed-pointfunctionsexhibitsO(n^2)convergence.LiketheBisectionMethod,itrequiresabracketingintervaltobeginandwitheachiterationgeneratessmallerandsmallerintervals(ifpossible),whichareboundedbyintersectionswithpreviousiterations.Thealgorithmisasfollows:

wherethex’sareintervals,m(x)isthemidpointofatheintervalx,andfisthefunctionwhoserootweseek(Kulischetal.35-36).Thesimilarityofthisalgorithmtothefixed-pointNewtonmethodisthatastartingintervalmustbesuppliedandtheintervalsizeisdecreasedusingaf(x)/f’(x)termduringiterations.Thisalgorithmisalmostassimpleasthebisectionmethodsinceaneasyconvergencecriterionhasbeenspecified;however,theintervalNewtonrequiresimplementationofrootfunc’(t)andrequiresforanevaluatedintervalx.Throughcomputationaltrials,Ihavedecidedtoincreasethecomplexityofthefunctionevaluationsforthef(x)/f’(x)bycomputingitsunitedextensioninsteadofaintervalextension.Sincebothf(x)andf’(x)involvemanyintervalarithmeticcalculationsinanintervalextension,thevaluesareoverexpandedfromtheirtruesolutionsetandincomputingoptimalresidencetimesweareinterestedinfindingtightboundsontherootgivenmodeluncertainties.Asaresult,theintervalNewtonstepiscalculatedbyfindingtheminimumsandmaximumsoff(x)andf’(x)givenallthecombinationsoftheendpointsoftheparametersandthetimeintervalandproducingunitedextensionvaluesforbothquantities.

VariationandConstraintsonParameters

Asoutlinedin2.1.3,percentuncertaintiesinthealpha,beta,xt,andxmparameterswillbeaddedwhenanalyzingthemodelusingintervalrootfinding.Thisvariationofparametersservestoaddresstheproblemswithfixed-pointoptimizationoutlinedin2.1.1.Thepotentialuseforintervalparametersliesinmodeltesting,simulatingarangeofenvironmentandforagerstates,andrelaxationofconstraints.Besidesreplacingparameterswithintervals,wealsowanttoconductthestabilityanalysismentionedin2.1.3.Thisprocessinvolvesincreasinguncertaintiesofagivenparameterwhilekeepingallotherparametersconstantuntilthemodelfails.AfterspecifyingtheintervalNewtonalgorithmwecanconstructafailurecondition.FailureofthemodelcanbeconsideredtooccurwhentheintervalNewtonmethodreturnsoftheinitialintervalsuppliedtotheintervalrootfinderastheoptimaltimeintervalforanyNnumberofpatches(i.e.thealgorithmwasunabletoprovidetighterboundsforoptimalresidencetimethantheinitialinterval).Thisinitialintervalwillbechosentobeasufficientlythickintervalfromfixed-pointanalysis,whichenclosesthetimeintervalofinterest.Asaresult,theintervalwillbetheonechosentoinitiatethebisectionmethod.Thereareotherconditionsthatcouldclassifyfailure;however,fromamodelstandpoint,averythickintervalforanoptimalresidencetimeisnotveryusefulsinceitimpliestoomuchvariabilityinaforager’sbehaviour.Consequently,stabilityanalysisisanumericallyintensiveprocedureinvolvinggradualincreaseduncertaintiesofaparameteruntilmodelfailure.Itisinterestingmorefromatheoreticalstandpointsinceitdescribeslimitationsofthemodelaswellasextremesituationsandtheireffectsonaforager’soptimalresidencetime.

Chapter3:NumericalAnalysisofModel

Inthischapter,IwillincludeMatlabcodeofkeyfunctionsimplementingthegeneralmethodsdiscussedin2.2,supportingfunctions,andalgorithmsastheyareusedinthenumericalanalysisofthemodel.

3.1Fixed-PointAnalysis

3.1.1GraphicalAnalysis

Insection,thegraphsofr(t),rootfunc(t)androotfunc’(t)wereseentobeinformativeforselectinganinitialintervaltobeginthebisectionandintervalNewtonmethods.Also,thesegraphshelpvisualizethebehaviourofthemodelastimepassesaswellasconfirminganoptimalresidencetimeexists.Thefollowingfunctionsarerequiredtoimplementthefunctionsandgraphthem.Also,thefollowingparameterspecificationsfromWilsonareused(155):

functiongain=gain(t,alpha,K,beta,xt,xm,N)

%GAIN(t,alpha,K,beta,xt,xm,N)GainFunction

%

%Generalevaluationoftheg(t)functionwhich

%takesinthevariablesinorder:time,patchgrowth

%rate,patchcarryingcapacity,consumingrate,

%travelcost,metabolicrate,andnumberof

%resourcepatches

rstar=(1-beta/alpha/N)*K;

deltaBA=beta-alpha;

num=(alpha*rstar+...

K*(deltaBA))*exp(deltaBA*t)-...

alpha*rstar;

denom=K*deltaBA;

inLog=num/denom;

gain=(beta*K/alpha)*(log(inLog)-deltaBA*t)-...

(xt+xm*t);

functionintakeRate=r(t,alpha,K,beta,xt,xm,N)

%R(t,alpha,K,beta,xt,xm,N)IntakeRateFunction

%

%Calculatesthenetintakerate.Takesinthevariables

%inorder:time,patchgrowthrate,patchcarrying

%capacity,consumingrate,travelcost,metabolicrate,

%andnumberofresourcepatches

g=gain(t,alpha,K,beta,xt,xm,N);

intakeRate=g./t;

functiongainprime=gainprime(t,alpha,K,beta,xt,xm,N)

%GAINP(t,alpha,K,beta,xt,xm,N)GainFunctionDerivative

%

%Generalevaluationoftheg'(t)function

%

%Takesinthevariablesinorder:time,patchgrowth

%rate,patchcarryingcapacity,consumingrate,

%travelcost,metabolicrate,andnumberof

%resourcepatches

rstar=(1-beta/alpha/N)*K;

deltaBA=beta-alpha;

exppart=(alpha*rstar+K*deltaBA)*exp(deltaBA*t);

num=deltaBA*exppart;

denom=exppart-alpha*rstar;

gainprime=(beta*K/alpha)*(num./denom-deltaBA)-xm;

functionrootfunc=rootfunc(t,alpha,K,beta,xt,xm,N)

%ROOTFUNC(t,alpha,K,beta,xt,xm,N)RootFunction

%

%Thisfunctiontheonewewanttofindtherootof

%Takesinthevariablesinor

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论