综合解析-人教版数学八年级上册期中综合复习试题 卷(Ⅱ)(含详解)_第1页
综合解析-人教版数学八年级上册期中综合复习试题 卷(Ⅱ)(含详解)_第2页
综合解析-人教版数学八年级上册期中综合复习试题 卷(Ⅱ)(含详解)_第3页
综合解析-人教版数学八年级上册期中综合复习试题 卷(Ⅱ)(含详解)_第4页
综合解析-人教版数学八年级上册期中综合复习试题 卷(Ⅱ)(含详解)_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题35分)一、单选题(5小题,每小题3分,共计15分)1、如图,已知在四边形中,,平分,,,,则四边形的面积是(

)A.24 B.30 C.36 D.422、如图,AB和CD相交于点O,则下列结论正确的是(

)A.∠1=∠2 B.∠2=∠3 C.∠3=∠4 D.∠1=∠53、将一副三角尺按如图所示的方式摆放,则的大小为(

)A. B. C. D.4、观察下列作图痕迹,所作线段为的角平分线的是(

)A. B.C. D.5、如图,B,C,E,F四点在一条直线上,下列条件能判定与全等的是(

)A. B.C. D.二、多选题(5小题,每小题4分,共计20分)······线······○······封······○······密······○······内······○······号学 级年 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······A.△OCD B.△OAB C.△OAF D.△OEF2、如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO.下列结论中正确的结论是(

)A.AC⊥BD B.CB=CD C.△ABC≌△ADC D.DA=DC3、下列长度的各种线段,可以组成三角形的是(

)A.2,3,4 B.1,1,2 C.5,5,9 D.7,5,14、如图,在中,点,,分别是边,,上的点,且,,相交于点,若点是的重心,则以下结论,其中一定正确结论有(

)A.线段,,是的三条角平分线B.的面积是面积的一半C.图中与面积相等的三角形有5个D.的面积是面积的5、如图,BE=CF,AB=DE,添加下列哪些条件不能推证△ABC≌△DEF(

A.BC=EF B.∠C=∠F C.AB∥DE D.∠A=∠D第Ⅱ卷(非选择题65分)三、填空题(5小题,每小题5分,共计25分)1、如图,在中,AE是的角平分线,D是AE延长线上一点,于点H.若,,则____________.2、如图,△ABC≌△DBE,△ABC的周长为30,AB=9,BE=8,则AC的长是__.3、如图,AD是△ABC的中线,BE是△ABD的中线,EFBC于点F.若,BD4,则EF长为___________.······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······4、有一张直角三角形纸片,记作△ABC,其中∠B=90°.按如图方式剪去它的一个角(虚线部分),在剩下的四边形ADEC中,若∠1=165°,则∠2的度数为_____°.5、如图,BE交AC于点M,交CF于点D,AB交CF于点N,,给出的下列五个结论中正确结论的序号为.①;②;③;④;⑤.四、解答题(5小题,每小题8分,共计40分)1、已知△ABC与ΔADE均为等腰直角三角形,且∠BAC=∠DAE=90°,点D在直线BC上.(1)如图1,当点D在CB延长线上时,求证:BE⊥CD;(2)如图2,当D点不在直线BC上时,BE、CD相交于M,①直接写出∠CME的度数;②求证:MA平分∠CME2、如图,点E在边AC上,已知AB=DC,∠A=∠D,BC∥DE,求证:DE=AE+BC.3、如图,点C、F在线段BE上,∠ABC=∠DEF=90°,BC=EF,请只添加一个合适的条件使△ABC≌△DEF.······线······○······封······○······密······○······内······○······号学 级年 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······(2)请从(1)中选择一种,加以证明.4、如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.5、如图,∠C=∠E,AC=AE,点D在BC边上,∠1=∠2,AC和DE相交于点O.求证:△ABC≌△ADE.-参考答案-一、单选题1、B【解析】【分析】过D作DE⊥AB交BA的延长线于E,根据角平分线的性质得到DE=CD=4,根据三角形的面积公式即可得到结论.【详解】如图,过D作DE⊥AB交BA的延长线于E,∵BD平分∠ABC,∠BCD=90°,∴DE=CD=4,∴四边形的面积故选B.【考点】本题考查了角平分线的性质,三角形的面积的计算,正确的作出辅助线是解题的关键.2、A【解析】【分析】根据平行线的性质和对顶角的性质进行判断.【详解】解:A、∵∠1与∠2是对顶角,∴∠1=∠2,本选项说法正确;B、∵AD与AB不平行,∴∠2≠∠3,本选项说法错误;C、∵AD与CB不一定平行,······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······D、∵CD与CB不平行,∴∠1≠∠5,本选项说法错误;故选:A.【考点】本题考查平行线的应用,熟练掌握平行线的性质和对顶角的意义与性质是解题关键.3、B【解析】【分析】先根据直角三角板的性质得出∠ACD的度数,再由三角形内角和定理即可得出结论.【详解】解:如图所示,由一副三角板的性质可知:∠ECD=60°,∠BCA=45°,∠D=90°,∴∠ACD=∠ECD-∠BCA=60°-45°=15°,∴∠α=180°-∠D-∠ACD=180°-90°-15°=75°,故选:B.【考点】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.4、C【解析】【分析】根据角平分线画法逐一进行判断即可.【详解】:所作线段为AB边上的高,选项错误;B:做图痕迹为AB边上的中垂线,CD为AB边上的中线,选项错误;C:CD为的角平分线,满足题意。D:所作线段为AB边上的高,选项错误故选:C.【考点】本题考查点到直线距离的画法,角平分线的画法,中垂线的画法,能够区别彼此之间的不同是解题切入点.5、A【解析】【分析】根据全等三角形的判定条件逐一判断即可.【详解】解:A、∵,∴,∵,∴,即在和中······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······∴,故A符合题意;B、∵,∴,再由,不可以利用SSA证明两个三角形全等,故B不符合题意;C、∵,∴,再由,不可以利用SSA证明两个三角形全等,故C不符合题意;D、∵,∴,,再由,不可以利用AAA证明两个三角形全等,故D不符合题意;故选A.【考点】本题主要考查了全等三角形的判定,熟知全等三角形的判定条件是解题的关键.二、多选题1、ABD【解析】【分析】利用平移的定义和性质求解,平移不改变图形的形状和大小。图形经过平移,对应线段相等,对应角相等,对应点所连的线段相等。.【详解】解:O是正六边形ABCDE的中心,都是等边三角形,都不能由平移得到,可以由平移得到,故符合题意,不符合题意;故选:【考点】本题考查的是正多边形的性质,平移的定义,平移的性质,熟悉平移的含义与性质是解题的关键.2、ABC【解析】【分析】根据全等三角形的判定以及性质,对选项逐个判定即可.【详解】解:∵∴,,又∵∴∴,A选项正确,符合题意;在和中∴,C选项正确,符合题意;∴,B选项正确,符合题意;根据已知条件得不到,D选项错误,不符合题意;故选ABC【考点】本题考查了全等三角形的判定与性质、等腰三角形的判定与性质以及垂直,根据全等三角形的判定与······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······3、AC【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:A、,能构成三角形,符合题意;B、1+1=2,不能构成三角形,不符合题意;C、,能构成三角形,符合题意;D、5+1<7,不能构成三角形,不符合题意.故选AC.【考点】此题主要考查了三角形三边关系,根据第三边的范围是:大于已知的两边的差,而小于两边的和是解决问题的关键.4、BCD【解析】【分析】根据三角形重心的性质分别判断即可;【详解】∵三角形的重心是三角形三条边中线的交点,∴线段,,是的三条中线,不是角平分线,故A错误;∵三角形的重心是三角形三条边中线的交点,∴的面积是面积的一半,故B正确;∵三角形的重心是三角形三条边中线的交点,∴图中与面积相等的三角形有5个,故C正确;∵三角形的重心是三角形三条边中线的交点,重心到顶点的距离与重心到对边中点的距离之比是,∴的面积是面积的,故D正确;故选BCD.【考点】本题主要考查了重心的定义理解,准确分析判定是解题的关键.5、ABD【解析】【分析】根据题目中的条件,可以得到BC=EF,AB=DE,然后即可判断各个选项中添加的条件是否能使得△ABC≌△DEF,从而可以解答本题.【详解】解:∵BE=CF,∴BE+EC=CF+EC,∴BC=EF,又∵AB=DE,∴添加条件BC=EF,根据SS不能判断△ABC≌△DEF,故选项A符合题意;添加条件∠C=∠F,根据SSA不能判断△ABC≌△DEF,故选项B符合题意;添加条件AB∥DE,可以得到∠B=∠DEF,根据(SAS)可判断△ABC≌△DEF,故选项C不符合题意;添加条件∠A=∠D,根据SSA不能判断△ABC≌△DEF,故选项D符合题意;故选:ABD.······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······本题主要考查了全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.三、填空题1、10°【解析】【分析】在△EFD中,由三角形的外角性质知:∠HED=∠AEC=∠B+∠BAC,所以∠B+∠BAC+∠EDH=90°;联立△ABC中,由三角形内角和定理得到的式子,即可推出∠EDH=(∠C-∠B).【详解】解:由三角形的外角性质知:∠HED=∠AEC=∠B+∠BAC,故∠B+∠BAC+∠EDH=90°

①,△ABC中,由三角形内角和定理得:∠B+∠BAC+∠C=180°,即:∠C+∠B+∠BAC=90°

②,②-①,得:∠EDH=(∠C-∠B)=×(50°-30°)=10°.故答案为:10°.【考点】本题考查三角形内角和定理、三角形的外角性质以及角平分线的定义等知识,解题的关键是证明∠EFD=(∠C-∠B).2、13【解析】【分析】根据全等三角形的性质求出BC,根据三角形的周长公式计算,得到答案.【详解】解:∵△ABC≌△DBE,BE=8,∴BC=BE=8,∵△ABC的周长为30,∴AB+AC+BC=30,∴AC=30﹣AB﹣BC=13,故答案为:13.【考点】此题主要考查全等三角形的性质,解题的关键是熟知全等三角形的性质.3、3【解析】【分析】因为S△ABD=S△ABC,S△BDE=S△ABD;所以S△BDE=S△ABC,再根据三角形的面积公式求得即可.【详解】解:∵AD是△ABC的中线,S△ABC=24,∴S△ABD=S△ABC=12,同理,BE是△ABD的中线,,∵S△BDE=BD•EF,······线······○······封······○······密······○······内······○······号学 级年······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······即∴EF=3.故答案为:3.【考点】此题考查了三角形的面积,三角形的中线特点,理解三角形高的定义,根据三角形的面积公式求解,是解题的关键.4、105°.【解析】【分析】根据三角形内角和定理结合∠B的度数即可得出∠BDE+∠BED的度数,再根据∠BDE与∠2互补、∠BED与∠1互补,即可求出∠1+∠2的度数,代入∠1=165°即可得出结论.【详解】∵∠B=90°,∴∠BDE+∠BED=180°-∠B=90°,又∵∠BDE+∠2=180°,∠BED+∠1=180°,∴∠1+∠2=360°-(∠BDE+∠BED)=270°.∵∠1=165°,∴∠2=105°.故答案为:105.【考点】本题考查了三角形内角和定理,根据三角形内角和定理求出∠BDE+∠BED的度数是解题的关键.5、①;②;③;⑤【解析】【分析】①先证明△ABE≌△ACF,然后根据全等三角形的性质即可判定;②利用全等三角形的性质即可判定;③根据ASA即可证明三角形全等;④无法证明该结论;⑤根据ASA证明三角形全等即可.【详解】解:在△ABE和△ACF中,,∴△ABE≌△ACF(AAS),∴∠BAE=∠CAF,BE=CF,故②正确,∴∠BAE-∠BAC=∠CAF-∠BAC,即∠1=∠2,故①正确,∵△ABE≌△ACF,∴AB=AC,在△CAN和△BAM中,,∴△CAN≌△BAM(ASA),故③正确,CD=DN不能证明成立,故④错误在△AFN和△AEM中,······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······结论中正确结论的序号为①;②;③;⑤.故答案为①;②;③;⑤.【考点】本题主要考查了三角形全等的判定和性质,解题的关键是正确寻找全等三角形全等的条件.四、解答题1、(1)见解析(2)①90°;②见解析【解析】【分析】(1)先推出∠CAD=∠BAE,∠C=∠ABC=45°,然后证明△CAD≌△BAE得到∠ABE=∠C=45°,则∠EBC=∠ABE+∠ABC=90°,即EB⊥CD;(2)①同理可证△BAE≌△CAD,得到∠ABE=∠ACD,再由∠EMC=∠EBC+∠BCD,得到∠EMC=∠ABE+∠ABC+∠ACD+∠BCD=90°;②如图,过点A作AG⊥BE于G,AF⊥CD于F,由△BAE≌△CAD,得到AG=AF,证明Rt△AGM≌Rt△AFM得到∠AMG=∠AMF,即AM平分∠EMC.(1)解:∵△ABC与ΔADE均为等腰直角三角形,且∠BAC=∠DAE=90°,∴AB=AC,AE=AD,∠DAE+∠DAB=∠CAB+∠DAB,∴∠CAD=∠BAE,∠C=∠ABC=45°,∴△CAD≌△BAE(SAS),∴∠ABE=∠C=45°,∴∠EBC=∠ABE+∠ABC=90°,即EB⊥CD;(2)解:①同理可证△BAE≌△CAD,∠ABC=∠ACB=90°,∴∠ABE=∠ACD,∵∠EMC=∠EBC+∠BCD,∴∠EMC=∠ABE+∠ABC+∠ACD+∠BCD=90°;②如图,过点A作AG⊥BE于G,AF⊥CD于F,∵△BAE≌△CAD,∴AG=AF,在Rt△AGM和Rt△AFM中,,∴Rt△AGM≌Rt△AFM(HL),∴∠AMG=∠AMF,即AM平分∠EMC.······线······○······封······○······密······○······内······○······号学 ······线······○······封······○······密······○······内······○······号学 级年 名姓······线······○······封······○······密······○······外······○······本题主要考查了全等三角形的性质与判定,三角形外角的性质,熟知全等三角形的性质与判定条件是解题的关键.2、见解析【解析】【分析】根据AAS证明△ABC≌△DCE,得到DE=AC,BC=EC,再进行线段的代换即可求解.【详解】解:证明:∵BC∥DE,∴∠ACB=∠DEC,在△ABC和△DCE中,∴△ABC≌△DCE(AAS),∴DE=AC,BC=EC,∴DE=AC=AE+EC=AE+BC.【考点】本题考查了全等三角形的判定与性质,熟知全等三角形的判定定理并根据题意灵活应用是解题关键.3、(1)∠ACB=∠DFE,AC=DF;(2)选择添加条件AC=DE,证明见解析.【解析】【分析】(1)根据题意添加条件即可;(2)选择添加条件AC=DE,根据“HL”证明即可.【详

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论