广东省阳江市教育局教研究室2024届初中数学毕业考试模拟冲刺卷含解析_第1页
广东省阳江市教育局教研究室2024届初中数学毕业考试模拟冲刺卷含解析_第2页
广东省阳江市教育局教研究室2024届初中数学毕业考试模拟冲刺卷含解析_第3页
广东省阳江市教育局教研究室2024届初中数学毕业考试模拟冲刺卷含解析_第4页
广东省阳江市教育局教研究室2024届初中数学毕业考试模拟冲刺卷含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省阳江市教育局教研究室2024届初中数学毕业考试模拟冲刺卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.解分式方程﹣3=时,去分母可得()A.1﹣3(x﹣2)=4 B.1﹣3(x﹣2)=﹣4C.﹣1﹣3(2﹣x)=﹣4 D.1﹣3(2﹣x)=42.如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,函数y=(k<0)的图象经过点B,则k的值为()A.﹣12 B.﹣32 C.32 D.﹣363.如图,在矩形ABCD中,AB=2,BC=1.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A. B. C. D.4.下列关于x的方程中一定没有实数根的是()A. B. C. D.5.-5的倒数是A. B.5 C.- D.-56.如图,BC平分∠ABE,AB∥CD,E是CD上一点,若∠C=35°,则∠BED的度数为()A.70° B.65° C.62° D.60°7.二次函数(a、b、c是常数,且a≠0)的图象如图所示,下列结论错误的是()A.4ac<b2 B.abc<0 C.b+c>3a D.a<b8.根据北京市统计局发布的统计数据显示,北京市近五年国民生产总值数据如图1所示,2017年国民生产总值中第一产业、第二产业、第三产业所占比例如图2所示,根据以上信息,下列判断错误的是()A.2013年至2017年北京市国民生产总值逐年增加B.2017年第二产业生产总值为5320亿元C.2017年比2016年的国民生产总值增加了10%D.若从2018年开始,每一年的国民生产总值比前一年均增长10%,到2019年的国民生产总值将达到33880亿元9.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是(

)A. B. C. D.10.下列各式中计算正确的是()A.x3•x3=2x6 B.(xy2)3=xy6 C.(a3)2=a5 D.t10÷t9=t11.在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.12.如图1,在△ABC中,AB=BC,AC=m,D,E分别是AB,BC边的中点,点P为AC边上的一个动点,连接PD,PB,PE.设AP=x,图1中某条线段长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是()A.PD B.PB C.PE D.PC二、填空题:(本大题共6个小题,每小题4分,共24分.)13.化简:12+31314.关于x的方程x2-3x+2=0的两根为x1,x2,则x1+x2+x1x2的值为______.15.已知一组数据-3,x,-2,3,1,6的众数为3,则这组数据的中位数为______.16.如图(a),有一张矩形纸片ABCD,其中AD=6cm,以AD为直径的半圆,正好与对边BC相切,将矩形纸片ABCD沿DE折叠,使点A落在BC上,如图(b).则半圆还露在外面的部分(阴影部分)的面积为_______.17.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=26,CD=24,那么sin∠OCE=▲.18.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)“千年古都,大美西安”.某校数学兴趣小组就“最想去的西安旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,(景点对应的名称分别是:A:大雁塔B:兵马俑C:陕西历史博物馆D:秦岭野生动物园E:曲江海洋馆).下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B”的学生人数.20.(6分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度(米)与登山时间(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟米,乙在地时距地面的高度为米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度(米)与登山时间(分)之间的函数关系式.(3)登山多长时间时,甲、乙两人距地面的高度差为50米?21.(6分)如图,以△ABC的边AB为直径的⊙O分别交BC、AC于F、G,且G是的中点,过点G作DE⊥BC,垂足为E,交BA的延长线于点D(1)求证:DE是的⊙O切线;(2)若AB=6,BG=4,求BE的长;(3)若AB=6,CE=1.2,请直接写出AD的长.22.(8分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.求证:BC是⊙O的切线;若⊙O的半径为6,BC=8,求弦BD的长.23.(8分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.24.(10分)如图,直线y=kx+2与x轴,y轴分别交于点A(﹣1,0)和点B,与反比例函数y=的图象在第一象限内交于点C(1,n).求一次函数y=kx+2与反比例函数y=的表达式;过x轴上的点D(a,0)作平行于y轴的直线l(a>1),分别与直线y=kx+2和双曲线y=交于P、Q两点,且PQ=2QD,求点D的坐标.25.(10分)如图,抛物线y=ax2+bx+c与x轴的交点分别为A(﹣6,0)和点B(4,0),与y轴的交点为C(0,3).(1)求抛物线的解析式;(2)点P是线段OA上一动点(不与点A重合),过P作平行于y轴的直线与AC交于点Q,点D、M在线段AB上,点N在线段AC上.①是否同时存在点D和点P,使得△APQ和△CDO全等,若存在,求点D的坐标,若不存在,请说明理由;②若∠DCB=∠CDB,CD是MN的垂直平分线,求点M的坐标.26.(12分)如图,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M称为碟顶.由定义知,取AB中点N,连结MN,MN与AB的关系是_____.抛物线y=对应的准蝶形必经过B(m,m),则m=_____,对应的碟宽AB是_____.抛物线y=ax2﹣4a﹣(a>0)对应的碟宽在x轴上,且AB=1.①求抛物线的解析式;②在此抛物线的对称轴上是否有这样的点P(xp,yp),使得∠APB为锐角,若有,请求出yp的取值范围.若没有,请说明理由.27.(12分)抛物线y=x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,﹣3).求抛物线的解析式;如图1,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.如图2,将抛物线平移,使其顶点E与原点O重合,直线y=kx+2(k>0)与抛物线相交于点P、Q(点P在左边),过点P作x轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】

方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断.【详解】方程两边同时乘以(x-2),得1﹣3(x﹣2)=﹣4,故选B.【点睛】本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.2、B【解析】

解:∵O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,∴OA=5,AB∥OC,∴点B的坐标为(8,﹣4),∵函数y=(k<0)的图象经过点B,∴﹣4=,得k=﹣32.故选B.【点睛】本题主要考查菱形的性质和用待定系数法求反函数的系数,解此题的关键在于根据A点坐标求得OA的长,再根据菱形的性质求得B点坐标,然后用待定系数法求得反函数的系数即可.3、B【解析】

根据S△ABE=S矩形ABCD=1=•AE•BF,先求出AE,再求出BF即可.【详解】如图,连接BE.∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=1,∠D=90°,在Rt△ADE中,AE===,∵S△ABE=S矩形ABCD=1=•AE•BF,∴BF=.故选:B.【点睛】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.4、B【解析】

根据根的判别式的概念,求出△的正负即可解题.【详解】解:A.x2-x-1=0,△=1+4=50,∴原方程有两个不相等的实数根,B.,△=36-144=-1080,∴原方程没有实数根,C.,,△=10,∴原方程有两个不相等的实数根,D.,△=m2+80,∴原方程有两个不相等的实数根,故选B.【点睛】本题考查了根的判别式,属于简单题,熟悉根的判别式的概念是解题关键.5、C【解析】

若两个数的乘积是1,我们就称这两个数互为倒数.【详解】解:5的倒数是.故选C.6、A【解析】

由AB∥CD,根据两直线平行,内错角相等,即可求得∠ABC的度数,又由BC平分∠ABE,即可求得∠ABE的度数,继而求得答案.【详解】∵AB∥CD,∠C=35°,∴∠ABC=∠C=35°,∵BC平分∠ABE,∴∠ABE=2∠ABC=70°,∵AB∥CD,∴∠BED=∠ABE=70°.故选:A.【点睛】本题考查了平行线的性质,解题的关键是掌握平行线的性质进行解答.7、D【解析】

根据二次函数的图象与性质逐一判断即可求出答案.【详解】由图象可知:△>0,∴b2﹣4ac>0,∴b2>4ac,故A正确;∵抛物线开口向上,∴a<0,∵抛物线与y轴的负半轴,∴c<0,∵抛物线对称轴为x=<0,∴b<0,∴abc<0,故B正确;∵当x=1时,y=a+b+c>0,∵4a<0,∴a+b+c>4a,∴b+c>3a,故C正确;∵当x=﹣1时,y=a﹣b+c>0,∴a﹣b+c>c,∴a﹣b>0,∴a>b,故D错误;故选D.考点:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程、不等式之间的转换,根的判别式的熟练运用.8、C【解析】

由条形图与扇形图中的数据及增长率的定义逐一判断即可得.【详解】A、由条形图知2013年至2017年北京市国民生产总值逐年增加,此选项正确;B、2017年第二产业生产总值为28000×19%=5320亿元,此选项正确;C、2017年比2016年的国民生产总值增加了,此选项错误;D、若从2018年开始,每一年的国民生产总值比前一年均增长10%,到2019年的国民生产总值将达到2800×(1+10%)2=33880亿元,此选项正确;故选C.【点睛】本题主要考查条形统计图与扇形统计图,解题的关键是根据条形统计图与扇形统计图得出具体数据.9、D【解析】

根据锐角三角函数的定义,余弦是邻边比斜边,可得答案.【详解】cosα=.故选D.【点睛】熟悉掌握锐角三角函数的定义是关键.10、D【解析】试题解析:A、原式计算错误,故本选项错误;B、原式计算错误,故本选项错误;C、原式计算错误,故本选项错误;D、原式计算正确,故本选项正确;故选D.点睛:同底数幂相除,底数不变,指数相减.11、C【解析】

根据轴对称图形和中心对称图形的定义进行分析即可.【详解】A、不是轴对称图形,也不是中心对称图形.故此选项错误;B、不是轴对称图形,也不是中心对称图形.故此选项错误;C、是轴对称图形,也是中心对称图形.故此选项正确;D、是轴对称图形,但不是中心对称图形.故此选项错误.故选C.【点睛】考点:1、中心对称图形;2、轴对称图形12、C【解析】观察可得,点P在线段AC上由A到C的运动中,线段PE逐渐变短,当EP⊥AC时,PE最短,过垂直这个点后,PE又逐渐变长,当AP=m时,点P停止运动,符合图像的只有线段PE,故选C.点睛:本题考查了动点问题的函数图象,对于此类问题来说是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、3【解析】试题分析:先进行二次根式的化简,然后合并,可得原式=23+3=33.14、5【解析】试题分析:利用根与系数的关系进行求解即可.解:∵x1,x2是方程x2-3x+2=0的两根,∴x1+x2=,x1x2=,∴x1+x2+x1x2=3+2=5.故答案为:5.15、【解析】分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.

详解:∵-3,x,-1,3,1,6的众数是3,

∴x=3,

先对这组数据按从小到大的顺序重新排序-3、-1、1、3、3、6位于最中间的数是1,3,

∴这组数的中位数是=1.

故答案为:1.点睛:本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.16、【解析】

解:如图,作OH⊥DK于H,连接OK,∵以AD为直径的半圆,正好与对边BC相切,∴AD=2CD.∴根据折叠对称的性质,A'D=2CD.∵∠C=90°,∴∠DA'C=30°.∴∠ODH=30°.∴∠DOH=60°.∴∠DOK=120°.∴扇形ODK的面积为.∵∠ODH=∠OKH=30°,OD=3cm,∴.∴.∴△ODK的面积为.∴半圆还露在外面的部分(阴影部分)的面积是:.故答案为:.17、【解析】垂径定理,勾股定理,锐角三角函数的定义。【分析】如图,设AB与CD相交于点E,则根据直径AB=26,得出半径OC=13;由CD=24,CD⊥AB,根据垂径定理得出CE=12;在Rt△OCE中,利用勾股定理求出OE=5;再根据正弦函数的定义,求出sin∠OCE的度数:。18、2【解析】分析:∵由主视图得出长方体的长是6,宽是2,这个几何体的体积是16,∴设高为h,则6×2×h=16,解得:h=1.∴它的表面积是:2×1×2+2×6×2+1×6×2=2.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)40;(2)想去D景点的人数是8,圆心角度数是72°;(3)280.【解析】

(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“醉美旅游景点D”的扇形圆心角的度数;(3)用800乘以样本中最想去B景点的人数所占的百分比即可.【详解】(1)被调查的学生总人数为8÷20%=40(人);(2)最想去D景点的人数为40-8-14-4-6=8(人),补全条形统计图为:扇形统计图中表示“醉美旅游景点D”的扇形圆心角的度数为×360°=72°;(3)800×=280,所以估计“醉美旅游景点B“的学生人数为280人.【点睛】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图和利用样本估计总体.20、(1)10;1;(2);(3)4分钟、9分钟或3分钟.【解析】

(1)根据速度=高度÷时间即可算出甲登山上升的速度;根据高度=速度×时间即可算出乙在A地时距地面的高度b的值;(2)分0≤x≤2和x≥2两种情况,根据高度=初始高度+速度×时间即可得出y关于x的函数关系;(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者做差等于50即可得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度-甲登山全程中y关于x的函数关系式=50,即可得出关于x的一元一次方程,解之可求出x值.综上即可得出结论.【详解】(1)(10-100)÷20=10(米/分钟),b=3÷1×2=1.故答案为:10;1.(2)当0≤x≤2时,y=3x;当x≥2时,y=1+10×3(x-2)=1x-1.当y=1x-1=10时,x=2.∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为.(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0≤x≤20).当10x+100-(1x-1)=50时,解得:x=4;当1x-1-(10x+100)=50时,解得:x=9;当10-(10x+100)=50时,解得:x=3.答:登山4分钟、9分钟或3分钟时,甲、乙两人距地面的高度差为50米.【点睛】本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=初始高度+速度×时间找出y关于x的函数关系式;(3)将两函数关系式做差找出关于x的一元一次方程.21、(1)证明见解析;(1);(3)1.【解析】

(1)要证明DE是的⊙O切线,证明OG⊥DE即可;(1)先证明△GBA∽△EBG,即可得出=,根据已知条件即可求出BE;(3)先证明△AGB≌△CGB,得出BC=AB=6,BE=4.8再根据OG∥BE得出=,即可计算出AD.【详解】证明:(1)如图,连接OG,GB,∵G是弧AF的中点,∴∠GBF=∠GBA,∵OB=OG,∴∠OBG=∠OGB,∴∠GBF=∠OGB,∴OG∥BC,∴∠OGD=∠GEB,∵DE⊥CB,∴∠GEB=90°,∴∠OGD=90°,即OG⊥DE且G为半径外端,∴DE为⊙O切线;(1)∵AB为⊙O直径,∴∠AGB=90°,∴∠AGB=∠GEB,且∠GBA=∠GBE,∴△GBA∽△EBG,∴,∴;(3)AD=1,根据SAS可知△AGB≌△CGB,则BC=AB=6,∴BE=4.8,∵OG∥BE,∴,即,解得:AD=1.【点睛】本题考查了相似三角形与全等三角形的判定与性质与切线的性质,解题的关键是熟练的掌握相似三角形与全等三角形的判定与性质与切线的性质.22、(1)详见解析;(2)BD=9.6.【解析】试题分析:(1)连接OB,由垂径定理可得BE=DE,OE⊥BD,,再由圆周角定理可得,从而得到∠OBE+∠DBC=90°,即,命题得证.(2)由勾股定理求出OC,再由△OBC的面积求出BE,即可得出弦BD的长.试题解析:(1)证明:如下图所示,连接OB.∵E是弦BD的中点,∴BE=DE,OE⊥BD,,∴∠BOE=∠A,∠OBE+∠BOE=90°.∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切线.(2)解:∵OB=6,BC=8,BC⊥OB,∴,∵,∴,∴.点睛:本题主要考查圆中的计算问题,解题的关键在于清楚角度的转换方式和弦长的计算方法.23、(1)50;(2)16;(3)56(4)见解析【解析】

(1)用A等级的频数除以它所占的百分比即可得到样本容量;

(2)用总人数分别减去A、B、D等级的人数得到C等级的人数,然后补全条形图;(3)用700乘以D等级的百分比可估计该中学八年级学生中体能测试结果为D等级的学生数;

(4)画树状图展示12种等可能的结果数,再找出抽取的两人恰好都是男生的结果数,然后根据概率公式求解.【详解】(1)10÷20%=50(名)答:本次抽样调查共抽取了50名学生.(2)50-10-20-4=16(名)答:测试结果为C等级的学生有16名.图形统计图补充完整如下图所示:(3)700×=56(名)答:估计该中学八年级学生中体能测试结果为D等级的学生有56名.(4)画树状图为:

共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,

所以抽取的两人恰好都是男生的概率=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.24、一次函数解析式为;反比例函数解析式为;.【解析】

(1)根据A(-1,0)代入y=kx+2,即可得到k的值;(2)把C(1,n)代入y=2x+2,可得C(1,4),代入反比例函数得到m的值;(3)先根据D(a,0),PD∥y轴,即可得出P(a,2a+2),Q(a,),再根据PQ=2QD,即可得,进而求得D点的坐标.【详解】(1)把A(﹣1,0)代入y=kx+2得﹣k+2=0,解得k=2,∴一次函数解析式为y=2x+2;把C(1,n)代入y=2x+2得n=4,∴C(1,4),把C(1,4)代入y=得m=1×4=4,∴反比例函数解析式为y=;(2)∵PD∥y轴,而D(a,0),∴P(a,2a+2),Q(a,),∵PQ=2QD,∴2a+2﹣=2×,整理得a2+a﹣6=0,解得a1=2,a2=﹣3(舍去),∴D(2,0).【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数的解析式.25、(1)y=﹣x2﹣x+3;(2)①点D坐标为(﹣,0);②点M(,0).【解析】

(1)应用待定系数法问题可解;(2)①通过分类讨论研究△APQ和△CDO全等②由已知求点D坐标,证明DN∥BC,从而得到DN为中线,问题可解.【详解】(1)将点(-6,0),C(0,3),B(4,0)代入y=ax2+bx+c,得,解得:,∴抛物线解析式为:y=-x2-x+3;(2)①存在点D,使得△APQ和△CDO全等,当D在线段OA上,∠QAP=∠DCO,AP=OC=3时,△APQ和△CDO全等,∴tan∠QAP=tan∠DCO,,∴,∴OD=,∴点D坐标为(-,0).由对称性,当点D坐标为(,0)时,由点B坐标为(4,0),此时点D(,0)在线段OB上满足条件.②∵OC=3,OB=4,∴BC=5,∵∠DCB=∠CDB,∴BD=BC=5,∴OD=BD-OB=1,则点D坐标为(-1,0)且AD=BD=5,连DN,CM,则DN=DM,∠NDC=∠MDC,∴∠NDC=∠DCB,∴DN∥BC,∴,则点N为AC中点.∴DN时△ABC的中位线,∵DN=DM=BC=,∴OM=DM-OD=∴点M(,0)【点睛】本题是二次函数综合题,考查了二次函数待定系数法、三角形全等的判定、锐角三角形函数的相关知识.解答时,注意数形结合.26、(1)MN与AB的关系是:MN⊥AB,MN=AB,(2)2,4;(2)①y=x2﹣2;②在此抛物线的对称轴上有这样的点P,使得∠APB为锐角,yp的取值范围是yp<﹣2或yp>2.【解析】

(1)直接利用等腰直角三角形的性质分析得出答案;(2)利用已知点为B(m,m),代入抛物线解析式进而得出m的值,即可得出AB的值;(2)①根据题意得出抛物线必过(2,0),进而代入求出答案;②根据y=x2﹣2的对称轴上P(0,2),P(0,﹣2)时,∠APB为直角,进而得出答案.【详解】(1)MN与AB的关系是:MN⊥AB,MN=AB,如图1,∵△AMB是等腰直角三角形,且N为AB的中点,∴MN⊥AB,MN=AB,故答案为MN⊥AB,MN=AB;(2)∵抛物线y=对应的准蝶形必经过B(m,m),∴m=m2,解得:m=2或m=0(不合题意舍去),当m=2则,2=x2,解得:x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论