2024届山西省朔州市朔城区第四中学中考数学四模试卷含解析_第1页
2024届山西省朔州市朔城区第四中学中考数学四模试卷含解析_第2页
2024届山西省朔州市朔城区第四中学中考数学四模试卷含解析_第3页
2024届山西省朔州市朔城区第四中学中考数学四模试卷含解析_第4页
2024届山西省朔州市朔城区第四中学中考数学四模试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山西省朔州市朔城区第四中学中考数学四模试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列分式中,最简分式是()A. B. C. D.2.如图,在等腰直角三角形ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是()A. B. C. D.3.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为A.40海里 B.60海里 C.70海里 D.80海里4.肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为()A.7.1×107 B.0.71×10﹣6 C.7.1×10﹣7 D.71×10﹣85.若矩形的长和宽是方程x2-7x+12=0的两根,则矩形的对角线长度为()A.5 B.7 C.8 D.106.一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是()A.x>1 B.x≥1 C.x>3 D.x≥37.关于x的一元二次方程x2+2x+k+1=0的两个实根x1,x2,满足x1+x2﹣x1x2<﹣1,则k的取值范围在数轴上表示为()A. B.C. D.8.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()A.y=(x+2)2﹣5B.y=(x+2)2+5C.y=(x﹣2)2﹣5D.y=(x﹣2)2+59.某美术社团为练习素描,他们第一次用120元买了若干本相同的画册,第二次用240元在同一家商店买与上一次相同的画册,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本画册?设第一次买了x本画册,列方程正确的是()A. B.C. D.10.如图,∠AOB=45°,OC是∠AOB的角平分线,PM⊥OB,垂足为点M,PN∥OB,PN与OA相交于点N,那么的值等于()A. B. C. D.11.长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6700000米,将6700000用科学记数法表示应为()A.6.7×106B.6.7×10﹣6C.6.7×105D.0.67×10712.二次函数的图像如图所示,下列结论正确是()A. B. C. D.有两个不相等的实数根二、填空题:(本大题共6个小题,每小题4分,共24分.)13.=_____.14.如图,直线y=k1x+b与双曲线交于A、B两点,其横坐标分别为1和5,则不等式k1x<+b的解集是▲.15.已知二次函数的图象开口向上,且经过原点,试写出一个符合上述条件的二次函数的解析式:_____.(只需写出一个)16.因式分解:______.17.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是.18.如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5cm,且tan∠EFC=,那么矩形ABCD的周长_____________cm.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.(1)求证:FH=ED;(2)当AE为何值时,△AEF的面积最大?20.(6分)为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.被随机抽取的学生共有多少名?在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?21.(6分)如图,点A在∠MON的边ON上,AB⊥OM于B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM于C.求证:四边形ABCD是矩形;若DE=3,OE=9,求AB、AD的长.22.(8分)如图,⊙O的直径DF与弦AB交于点E,C为⊙O外一点,CB⊥AB,G是直线CD上一点,∠ADG=∠ABD.求证:AD•CE=DE•DF;说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路过程写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②、③中选取一个补充或更换已知条件,完成你的证明.①∠CDB=∠CEB;②AD∥EC;③∠DEC=∠ADF,且∠CDE=90°.23.(8分)声音在空气中传播的速度y(m/s)是气温x(℃)的一次函数,下表列出了一组不同气温的音速:气温x(℃)05101520音速y(m/s)331334337340343(1)求y与x之间的函数关系式:(2)气温x=23℃时,某人看到烟花燃放5s后才听到声响,那么此人与烟花燃放地约相距多远?24.(10分)如图,矩形ABCD绕点C顺时针旋转90°后得到矩形CEFG,连接DG交EF于H,连接AF交DG于M;(1)求证:AM=FM;(2)若∠AMD=a.求证:=cosα.25.(10分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x/(元/千克)506070销售量y/千克1008060(1)求y与x之间的函数表达式;设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入-成本);试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少时获得最大利润,最大利润是多少?26.(12分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后放回,再随机摸出一个小球,求下列事件的概率:两次取出的小球标号相同;两次取出的小球标号的和等于4.27.(12分)按要求化简:(a﹣1)÷,并选择你喜欢的整数a,b代入求值.小聪计算这一题的过程如下:解:原式=(a﹣1)÷…①=(a﹣1)•…②=…③当a=1,b=1时,原式=…④以上过程有两处关键性错误,第一次出错在第_____步(填序号),原因:_____;还有第_____步出错(填序号),原因:_____.请你写出此题的正确解答过程.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解析】试题分析:选项A为最简分式;选项B化简可得原式==;选项C化简可得原式==;选项D化简可得原式==,故答案选A.考点:最简分式.2、A【解析】∵△DEF是△AEF翻折而成,

∴△DEF≌△AEF,∠A=∠EDF,

∵△ABC是等腰直角三角形,

∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,

∴∠BED=∠CDF,

设CD=1,CF=x,则CA=CB=2,

∴DF=FA=2-x,

∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,

解得x=,

∴sin∠BED=sin∠CDF=.

故选:A.3、D【解析】分析:依题意,知MN=40海里/小时×2小时=80海里,∵根据方向角的意义和平行的性质,∠M=70°,∠N=40°,∴根据三角形内角和定理得∠MPN=70°.∴∠M=∠MPN=70°.∴NP=NM=80海里.故选D.4、C【解析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】0.00000071的小数点向或移动7位得到7.1,所以0.00000071用科学记数法表示为7.1×10﹣7,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5、A【解析】解:设矩形的长和宽分别为a、b,则a+b=7,ab=12,所以矩形的对角线长====1.故选A.6、C【解析】试题解析:一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是x>1.故选C.考点:在数轴上表示不等式的解集.7、D【解析】试题分析:根据根的判别式和根与系数的关系列出不等式,求出解集.解:∵关于x的一元二次方程x2+2x+k+1=0有两个实根,∴△≥0,∴4﹣4(k+1)≥0,解得k≤0,∵x1+x2=﹣2,x1•x2=k+1,∴﹣2﹣(k+1)<﹣1,解得k>﹣2,不等式组的解集为﹣2<k≤0,在数轴上表示为:,故选D.点评:本题考查了根的判别式、根与系数的关系,在数轴上找到公共部分是解题的关键.8、A【解析】

直接根据“上加下减,左加右减”的原则进行解答即可.【详解】抛物线y=x2的顶点坐标为(0,0),先向左平移2个单位再向下平移1个单位后的抛物线的顶点坐标为(﹣2,﹣1),所以,平移后的抛物线的解析式为y=(x+2)2﹣1.故选:A.【点睛】本题考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答本题的关键.9、A【解析】分析:由设第一次买了x本资料,则设第二次买了(x+20)本资料,由等量关系:第二次比第一次每本优惠4元,即可得到方程.详解:设他上月买了x本笔记本,则这次买了(x+20)本,根据题意得:.故选A.点睛:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答即可.10、B【解析】

过点P作PE⊥OA于点E,根据角平分线上的点到角的两边的距离相等可得PE=PM,再根据两直线平行,内错角相等可得∠POM=∠OPN,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠PNE=∠AOB,再根据直角三角形解答.【详解】如图,过点P作PE⊥OA于点E,∵OP是∠AOB的平分线,∴PE=PM,∵PN∥OB,∴∠POM=∠OPN,∴∠PNE=∠PON+∠OPN=∠PON+∠POM=∠AOB=45°,∴=.故选:B.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,以及三角形的一个外角等于与它不相邻的两个内角的和,作辅助线构造直角三角形是解题的关键.11、A【解析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:6700000=6.7×106,故选:A【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12、C【解析】【分析】观察图象:开口向下得到a<0;对称轴在y轴的右侧得到a、b异号,则b>0;抛物线与y轴的交点在x轴的上方得到c>0,所以abc<0;由对称轴为x==1,可得2a+b=0;当x=-1时图象在x轴下方得到y=a-b+c<0,结合b=-2a可得3a+c<0;观察图象可知抛物线的顶点为(1,3),可得方程有两个相等的实数根,据此对各选项进行判断即可.【详解】观察图象:开口向下得到a<0;对称轴在y轴的右侧得到a、b异号,则b>0;抛物线与y轴的交点在x轴的上方得到c>0,所以abc<0,故A选项错误;∵对称轴x==1,∴b=-2a,即2a+b=0,故B选项错误;当x=-1时,y=a-b+c<0,又∵b=-2a,∴3a+c<0,故C选项正确;∵抛物线的顶点为(1,3),∴的解为x1=x2=1,即方程有两个相等的实数根,故D选项错误,故选C.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0)的图象,当a>0,开口向上,函数有最小值,a<0,开口向下,函数有最大值;对称轴为直线x=,a与b同号,对称轴在y轴的左侧,a与b异号,对称轴在y轴的右侧;当c>0,抛物线与y轴的交点在x轴的上方;当△=b2-4ac>0,抛物线与x轴有两个交点.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【解析】分析:第一项根据非零数的零次幂等于1计算,第二项根据算术平方根的意义化简,第三项根据负整数指数幂等于这个数的正整数指数幂的倒数计算.详解:原式=1+2﹣2=1.故答案为:1.点睛:本题考查了实数的运算,熟练掌握零指数幂、算术平方根的意义,负整数指数幂的运算法则是解答本题的关键.14、-2<x<-1或x>1.【解析】不等式的图象解法,平移的性质,反比例函数与一次函数的交点问题,对称的性质.不等式k1x<+b的解集即k1x-b<的解集,根据不等式与直线和双曲线解析式的关系,可以理解为直线y=k1x-b在双曲线下方的自变量x的取值范围即可.而直线y=k1x-b的图象可以由y=k1x+b向下平移2b个单位得到,如图所示.根据函数图象的对称性可得:直线y=k1x-b和y=k1x+b与双曲线的交点坐标关于原点对称.由关于原点对称的坐标点性质,直线y=k1x-b图象与双曲线图象交点A′、B′的横坐标为A、B两点横坐标的相反数,即为-1,-2.∴由图知,当-2<x<-1或x>1时,直线y=k1x-b图象在双曲线图象下方.∴不等式k1x<+b的解集是-2<x<-1或x>1.15、y=x2等【解析】分析:根据二次函数的图象开口向上知道a>1,又二次函数的图象过原点,可以得到c=1,所以解析式满足a>1,c=1即可.详解:∵二次函数的图象开口向上,∴a>1.∵二次函数的图象过原点,∴c=1.故解析式满足a>1,c=1即可,如y=x2.故答案为y=x2(答案不唯一).点睛:本题是开放性试题,考查了二次函数的性质,二次函数图象上点的坐标特征,对考查学生所学函数的深入理解、掌握程度具有积极的意义,但此题若想答对需要满足所有条件,如果学生没有注意某一个条件就容易出错.本题的结论是不唯一的,其解答思路渗透了数形结合的数学思想.16、【解析】

先提取公因式x,再对余下的多项式利用完全平方公式继续分解.【详解】xy1+1xy+x,=x(y1+1y+1),=x(y+1)1.故答案为:x(y+1)1.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.17、.【解析】试题分析:画树状图为:共有36种等可能的结果数,其中“两枚骰子的点数和小于8且为偶数”的结果数为9,所以“两枚骰子的点数和小于8且为偶数”的概率==.故答案为.考点:列表法与树状图法.18、36.【解析】试题分析:∵△AFE和△ADE关于AE对称,∴∠AFE=∠D=90°,AF=AD,EF=DE.∵tan∠EFC==,∴可设EC=3x,CF=4x,那么EF=5x,∴DE=EF=5x.∴DC=DE+CE=3x+5x=8x.∴AB=DC=8x.∵∠EFC+∠AFB=90°,∠BAF+∠AFB=90°,∴∠EFC=∠BAF.∴tan∠BAF=tan∠EFC=,∴=.∴AB=8x,∴BF=6x.∴BC=BF+CF=10x.∴AD=10x.在Rt△ADE中,由勾股定理,得AD2+DE2=AE2.∴(10x)2+(5x)2=(5)2.解得x=1.∴AB=8x=8,AD=10x=10.∴矩形ABCD的周长=8×2+10×2=36.考点:折叠的性质;矩形的性质;锐角三角函数;勾股定理.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)证明见解析;(2)AE=2时,△AEF的面积最大.【解析】

(1)根据正方形的性质,可得EF=CE,再根据∠CEF=∠90°,进而可得∠FEH=∠DCE,结合已知条件∠FHE=∠D=90°,利用“AAS”即可证明△FEH≌△ECD,由全等三角形的性质可得FH=ED;(2)设AE=a,用含a的函数表示△AEF的面积,再利用函数的最值求面积最大值即可.【详解】(1)证明:∵四边形CEFG是正方形,∴CE=EF.∵∠FEC=∠FEH+∠CED=90°,∠DCE+∠CED=90°,∴∠FEH=∠DCE.在△FEH和△ECD中,EF=CE∠F∴△FEH≌△ECD,∴FH=ED.(2)解:设AE=a,则ED=FH=4-a,∴S△AEF=12AE·FH=12a(4-a)=-12∴当AE=2时,△AEF的面积最大.【点睛】本题考查了正方形性质、矩形性质以及全等三角形的判断和性质和三角形面积有关的知识点,熟记全等三角形的各种判断方法是解题的关键.20、(1)被随机抽取的学生共有50人;(2)活动数为3项的学生所对应的扇形圆心角为72°,(3)参与了4项或5项活动的学生共有720人.【解析】分析:(1)利用活动数为2项的学生的数量以及百分比,即可得到被随机抽取的学生数;(2)利用活动数为3项的学生数,即可得到对应的扇形圆心角的度数,利用活动数为5项的学生数,即可补全折线统计图;(3)利用参与了4项或5项活动的学生所占的百分比,即可得到全校参与了4项或5项活动的学生总数.详解:(1)被随机抽取的学生共有14÷28%=50(人);(2)活动数为3项的学生所对应的扇形圆心角=×360°=72°,活动数为5项的学生为:50﹣8﹣14﹣10﹣12=6,如图所示:(3)参与了4项或5项活动的学生共有×2000=720(人).点睛:本题主要考查折线统计图与扇形统计图及概率公式,根据折线统计图和扇形统计图得出解题所需的数据是解题的关键.21、(1)证明见解析;(2)AB、AD的长分别为2和1.【解析】

(1)证Rt△ABO≌Rt△DEA(HL)得∠AOB=∠DAE,AD∥BC.证四边形ABCD是平行四边形,又,故四边形ABCD是矩形;(2)由(1)知Rt△ABO≌Rt△DEA,AB=DE=2.设AD=x,则OA=x,AE=OE-OA=9-x.在Rt△DEA中,由得:.【详解】(1)证明:∵AB⊥OM于B,DE⊥ON于E,∴.在Rt△ABO与Rt△DEA中,∵∴Rt△ABO≌Rt△DEA(HL).∴∠AOB=∠DAE.∴AD∥BC.又∵AB⊥OM,DC⊥OM,∴AB∥DC.∴四边形ABCD是平行四边形.∵,∴四边形ABCD是矩形;(2)由(1)知Rt△ABO≌Rt△DEA,∴AB=DE=2.设AD=x,则OA=x,AE=OE-OA=9-x.在Rt△DEA中,由得:,解得.∴AD=1.即AB、AD的长分别为2和1.【点睛】矩形的判定和性质;掌握判断定证三角形全等是关键.22、(1)见解析;(2)见解析.【解析】

连接AF,由直径所对的圆周角是直角、同弧所对的圆周角相等的性质,证得直线CD是⊙O的切线,若证AD•CE=DE•DF,只要征得△ADF∽△DEC即可.在第一问中只能证得∠EDC=∠DAF=90°,所以在第二问中只要证得∠DEC=∠ADF即可解答此题.【详解】(1)连接AF,∵DF是⊙O的直径,∴∠DAF=90°,∴∠F+∠ADF=90°,∵∠F=∠ABD,∠ADG=∠ABD,∴∠F=∠ADG,∴∠ADF+∠ADG=90°∴直线CD是⊙O的切线∴∠EDC=90°,∴∠EDC=∠DAF=90°;(2)选取①完成证明∵直线CD是⊙O的切线,∴∠CDB=∠A.∵∠CDB=∠CEB,∴∠A=∠CEB.∴AD∥EC.∴∠DEC=∠ADF.∵∠EDC=∠DAF=90°,∴△ADF∽△DEC.∴AD:DE=DF:EC.∴AD•CE=DE•DF.【点睛】此题考查了切线的性质与判定、弦切角定理、相似三角形的判定与性质等知识.注意乘积的形式可以转化为比例的形式,通过证明三角形相似得出.还要注意构造直径所对的圆周角是圆中的常见辅助线.23、(1)y=x+331;(2)1724m.【解析】

(1)先设函数一般解析式,然后根据表格中的数据选择其中两个带入解析式中即可求得函数关系式(2)将x=23带入函数解析式中求解即可.【详解】解:(1)设y=kx+b,∴∴k=,∴y=x+331.(2)当x=23时,y=x23+331=344.8∴5344.8=1724.∴此人与烟花燃放地相距约1724m.【点睛】此题重点考察学生对一次函数的实际应用,熟练掌握一次函数解析式的求法是解题的关键.24、(1)见

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论