




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第40页(共40页)七年级—线段的动点问题(含答案)一.解答题(共40小题)1.已知数轴上有A,B,C,D,E,F六个点,点C在原点位置,点B表示的数为﹣4,下表中A﹣B,B﹣C,D﹣C,E﹣D,F﹣E的含义为前一个点所表示的数与后一个点所表示的数的差,比如B﹣C为﹣4﹣0=﹣4.A﹣BB﹣CD﹣CE﹣DF﹣E10﹣4﹣1x2(1)在数轴上表示出A,D两点;(2)当点A与点F的距离为3时,求x的值;(3)当点M以每秒1个单位长度的速度从点B出发向左运动时,同时点N从点A出发,以每秒3个单位长度的速度向点C运动,到达点C后立即以同样的速度反方向运动,那么出发秒钟时,点D到点M,点N的距离相等(直接写出答案).2.如图,在数轴上点A表示的数是﹣3,点B在点A的右侧,且到点A的距离是18;点C在点A与点B之间,且到点B的距离是到点A距离的2倍.(1)点B表示的数是;点C表示的数是;(2)若点P从点A出发,沿数轴以每秒4个单位长度的速度向右匀速运动;同时,点Q从点B出发,沿数轴以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒,在运动过程中,当t为何值时,点P与点Q之间的距离为6?(3)在(2)的条件下,若点P与点C之间的距离表示为PC,点Q与点B之间的距离表示为QB,在运动过程中,是否存在某一时刻使得PC+QB=4?若存在,请求出此时点P表示的数;若不存在,请说明理由.3.定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C在线段AB上,且AC:CB=1:2,则点C是线段AB的一个三等分点,显然,一条线段的三等分点有两个.(1)已知:如图2,DE=15cm,点P是DE的三等分点,求DP的长.(2)已知,线段AB=15cm,如图3,点P从点A出发以每秒1cm的速度在射线AB上向点B方向运动;点Q从点B出发,先向点A方向运动,当与点P重合后立马改变方向与点P同向而行且速度始终为每秒2cm,设运动时间为t秒.①若点P点Q同时出发,且当点P与点Q重合时,求t的值.②若点P点Q同时出发,且当点P是线段AQ的三等分点时,求t的值.4.如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?5.【新知理解】如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.(1)线段的中点这条线段的“巧点”;(填“是”或“不是”).(2)若AB=12cm,点C是线段AB的巧点,则AC=cm;【解决问题】(3)如图②,已知AB=12cm.动点P从点A出发,以2cm/s的速度沿AB向点B匀速移动:点Q从点B出发,以1cm/s的速度沿BA向点A匀速移动,点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s).当t为何值时,A、P、Q三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由6.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.【问题情境】如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)填空:①A、B两点间的距离AB=,线段AB的中点表示的数为;②用含t的代数式表示:t秒后,点P表示的数为;点Q表示的数为.(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;(3)求当t为何值时,PQ=AB;(4)若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.7.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?请直接写出你的答案.(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.8.如图,B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动1次,C是线段BD的中点,AD=10cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,①AB=cm.②求线段CD的长度.(2)①点B沿点A→D运动时,AB=cm;②点B沿点D→A运动时,AB=cm.(用含t的代数式表示AB的长)(3)在运动过程中,若AB中点为E,则EC的长是否变化,若不变,求出EC的长;若发生变化,请说明理由.9.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.10.已知线段AB=a,MN=b(a,b为常数,且a>2b),线段MN在直线AB上运动(点B、M在点A的右侧.点N在点M的右侧).点P是线段AB的中点,点Q是线段MN的中点.(1)如图1,当点N与点B重合时,求线段PQ的长度(用含a,b的代数式表示);(2)如图2,当线段MN运动到点B、M重合时,求线段AN、PQ之间的数量关系式;(3)当线段MN运动至点Q在点B的右侧时,请你画图探究线段AN、BM、PQ三者之间的数量关系式.11.如图,数轴上点A,B表示的有理数分别为﹣6,3,点P是射线AB上一个动点(不与点A,B重合).M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.(1)若点P表示的有理数是0,那么MN的长为;若点P表示的有理数是6,那么MN的长为.(2)点P在射线AB上运动(不与点A,B重合)的过程中,MN的长是否发生改变?若不改变,请写出求MN的长的过程;若改变,请说明理由.12.已知点C在线段AB上,且AC=6,BC=4,M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)如果AC=a,BC=b,其他条件不变,你能猜出MN的长度吗?(3)如果我们这样叙述它:“已知点C与线段AB在同一直线上,线段AC=6,BC=4,M,N分别是AC,BC的中点,求MN的长度.”结果会有变化吗?如果有,求出结果.13.如图,C是线段AB上一点,AB=20cm,BC=8cm,点P从A出发,以2cm/s的速度沿AB向右运动,终点为B;点Q从点B出发,以1cm/s的速度沿BA向左运动,终点为A.已知P、Q同时出发,当其中一点到达终点时,另一点也随之停止运功.设点P运动时间为xs.(1)AC=cm;(2)当x=s时,P、Q重合;(3)是否存在某一时刻,使得C、P、Q这三个点中,有一个点恰为另外两点所连线段的中点?若存在,求出所有满足条件的x的值;若不存在,请说明理由.14.有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,A、B两点之间的距离是90米.甲、乙两机器人分别从A、B两点同时同向出发到终点C,乙机器人始终以50米/分的速度行走,乙行走9分钟到达C点.设两机器人出发时间为t(分钟),当t=3分钟时,甲追上乙.前4分钟甲机器人的速度保持不变,在4≤t≤6分钟时,甲的速度变为另一数值,且甲、乙两机器人之间的距离保持不变.请解答下面问题:(1)B、C两点之间的距离是米.在4≤t≤6分钟时,甲机器人的速度为米/分.(2)求甲机器人前3分钟的速度为多少米/分?(3)求两机器人前6分钟内出发多长时间相距28米?(4)若6分钟后,甲机器人的速度又恢复为原来出发时的速度,直接写出当t>6时,甲、乙两机器人之间的距离S.(用含t的代数式表示)15.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?并说明理由;16.(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.17.如图,点B、C是线段AD上的两点,点M和点N分别在线段AB和线段CD上.(1)当AD=8,MN=6,AM=BM,CN=DN时,BC=;(2)若AD=a,MN=b①当AM=2BM,DN=2CN时,求BC的长度(用含a和b的代数式表示)②当AM=nBM,DN=nCN(n是正整数)时,直接写出BC=.(用含a、b、n的代数式表示)18.如图所示.(1)若线段AB=4cm,点C在线段AB上(如图①),点M、N分别是线段AC、BC的中点,求线段MN长.(2)若线段AB=acm,点C在线段AB的延长线上(如图②),点M、N分别是线段AC、BC的中点,你能猜想出MN的长度吗?请写出你的结论,并说明理由.19.如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A,B是数轴上的点,请参照如图回答下列问题:(1)如果点A表示数﹣3,将点A向右移动7个单位长度到达点B,那么终点B表示的数是,A、B两点间的距离是.(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度到达点B,那么终点B表示的数是;A、B两点间的距离为.(3)一般地,如果A点表示的数为a,将A点向右移动x个单位长度,再向左移动y个单位长度到达点B,请你求出终点B表示什么数?A、B两点间的距离为多少?20.已知多项式﹣2x2y﹣a+3xy2﹣4y+5次数是4,项数是b,数轴上A、B两点所对应的数分别是a和b.(1)填空:a=,b=,并在数轴上标出A、B两点的位置.(2)数轴上是否存在点C,C点在A点的右侧,且点C到A点的距离是点C到B点的距离的2倍?若存在,请求出点C表示的数;若不存在,请说明理由.(3)点D以每秒2个单位的速度从A点出发向左运动,同时点E以3个单位每秒的速度从B点出发向右运动,点F以每秒4个单位的速度从O点出发向左运动.若P为DE的中点,DE=16,求PF的长.21.如图,M是定长线段AB上一个定点,点C在线段AM上,点D在线段BM上.点C、点D分别从点M、点B出发,分别以1cm/s、2cm/s的速度沿直线BA左运动,运动方向如箭头所示.(1)若AB=20cm,当点C、D运动了2s时,求AC+MD的长度;(2)若点C、D运动时,总有MD=2AC,若AM=ncm,求AB的长;(3)在(2)的条件下,N是直线AB上一点,且MN+BN=AN,求的值.22.如图,C是线段AB上一点,AB=16cm,BC=6cm.(1)AC=cm;(2)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B;点Q以1cm/s的速度沿BA向左运动,终点为A.当一个点到达终点,另一个点也随之停止运动.求运动多少秒时,C、P、Q三点,有一点恰好是以另两点为端点的线段的中点?23.如图,数轴上A,B两点对应的有理数分别为﹣10和20,点P从点O出发,以每秒1个单位长度的速度沿数轴正方向匀速运动,点Q同时从点A出发,以每秒2个单位长度的速度沿数轴正方向匀速运动,设运动时间为t秒.(1)分别求当t=2及t=12时,对应的线段PQ的长度;(2)当PQ=5时,求所有符合条件的t的值,并求出此时点Q所对应的数;(3)若点P一直沿数轴的正方向运动,点Q运动到点B时,立即改变运动方向,沿数轴的负方向运动,到达点A时,随即停止运动,在点Q的整个运动过程中,是否存在合适的t值,使得PQ=8?若存在,求出所有符合条件的t值,若不存在,请说明理由.24.已知数轴上有A、B、C三个点,分别表示有理数﹣24,﹣10,8,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=,PC=;(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由25.如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A,B是数轴上的点,请参照下图并思考,完成下列各题.(1)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A,B两点间的距离为(2)如果点A表示数﹣4,将A点向右移动68个单位长度,再向左移动156个单位长度,那么终点B表示的数是,A,B两点间的距离是.(3)一般地,如果A点表示数为m,将A点向右移动n个单位长度,再向左移动P个单位长度,那么,请你猜想终点B表示什么数?A,B两点间的距离为多少?26.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是;点P表示的数是(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.27.在数轴上点A表示的数是8,B是数轴上一点,且AB=12,动点P从点A出发,以每秒6个单位长度的速度沿数轴向左运动,设运动时间为t(t>0)秒.(1)①写出数轴上点B表示的数,②写出点P表示的数(用含t的代数式表示)(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速前进,若点P,Q同时出发,问点P运动多少秒时追上点Q?(3)在(2)的情况下,若M为AP的中点,N为PB的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请画出图形,并求出线段MN的长..28.如图,点A、B和线段CD都在数轴上,点A、C、D、B起始位置所表示的数分别为﹣2、0、3、12;线段CD沿数轴的正方向以每秒1个单位的速度移动,移动时间为t秒.(1)当t=0秒时,AC的长为,当t=2秒时,AC的长为.(2)用含有t的代数式表示AC的长为.(3)当t=秒时AC﹣BD=5,当t=秒时AC+BD=15.(4)若点A与线段CD同时出发沿数轴的正方向移动,点A的速度为每秒2个单位,在移动过程中,是否存在某一时刻使得AC=2BD,若存在,请求出t的值;若不存在,请说明理由.29.如图,数轴上的点O和A分别表示0和10,点P是线段OA上一动点,沿O→A→O以每秒2个单位的速度往返运动1次,B是线段OA的中点,设点P运动时间为t秒(0≤t≤10).(1)线段BA的长度为;(2)当t=3时,点P所表示的数是;(3)求动点P所表示的数(用含t的代数式表示);(4)在运动过程中,若OP中点为Q,则QB的长度是否发生变化?若不变,请求出它的值;若变化,请直接用含t的代数式QB的长度.30.(1)观察思考如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行多少场比赛?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.31.在射线OM上有三点A,B,C,满足OA=15cm,AB=30cm,BC=10cm,点P从点O出发,沿OM方向以1cm/s的速度匀速运动;点Q从点C出发,沿线段CO匀速向点O运动(点Q运动到点O时停止运动).如果两点同时出发,请你回答下列问题:(1)已知点P和点Q重合时PA=AB,求OP的长度;(2)在(1)题的条件下,求点Q的运动速度.32.如图,已知数轴上A、B两点所表示的数分别为﹣2和8.(1)求线段AB的长;(2)已知点P为数轴上点A左侧的一点,且M为PA的中点,N为PB的中点.请你画出图形,观察MN的长度是否发生改变?若不变,求出线段MN的长;若改变,请说明理由.33.如图,已知数轴上的点A对应的数为6,B是数轴上的一点,且AB=10,动点P从点A出发,以每秒6个单位长度的速度沿着数轴向左匀速运动,设运动时间为t秒(t>0).(1)数轴上点B对应的数是,点P对应的数是(用t的式子表示);(2)动点Q从点B与点P同时出发,以每秒4个单位长度的速度沿着数轴向左匀速运动,试问:运动多少时间点P可以追上点Q?(3)M是AP的中点,N是PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若有变化,说明理由;若没有变化,请你画出图形,并求出MN的长.34.如图,射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm,点P从点O出发,沿OM方向以1cm/秒的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.(1)当点P运动到线段AB上时,分别取OP和AB的中点E、F,=.(2)若点Q运动速度为3cm/秒,经过秒P、Q两点相距70cm.35.如图,先在数轴上画出表示点A的相反数的点B,再把点A向右移动10个单位,得到点C.(1)点B表示的数为;点C表示的数为;B、C两点之间的距离为个单位长度;(2)动点P从点B出发,以2个单位/秒的速度向右运动,动点Q从C点出发,以3个单位/秒的速度向左运动,若点P、Q相遇在点D,求点D对应的数.(3)动点P从点B出发,以2个单位/秒的速度向左运动,动点Q从C点出发,以3个单位/秒的速度向左运动,若点Q在点E处追上点P,则求点E对应的数.36.阅读下列材料:点A、点B在数轴上分别表示两个有理数,A、B两点之间的距离表示为AB.(1)当点A在原点时,若点B表示的数为5时,则AB=|5﹣0|=5;若点B表示的数为﹣5时,则AB=|﹣5﹣0|=|﹣5|=5;若点B表示的数为a时,则AB=|a﹣0|=|a|,当a>0,AB=a,当a=0,AB=0,当a<0,AB=﹣a(2)当A、B都不在原点时,A表示的数为a,B表示的数为b,则AB=|a﹣b|,当a﹣b>0时,AB=|a﹣b|=a﹣b;当a﹣b=0时,AB=|a﹣b|=0;当a﹣b<0时,AB=|a﹣b|=﹣(a﹣b).根据上述材料,回答下列问题:有理数a、b、c在数轴上的位置如图所示:(1)化简|a|=|c|=|a+b|=|a﹣b|=(2)若点C表示的数为x,当|x+1|+|x﹣2|取得的值最小时,x的取值范围?37.大家知道|5|=|5﹣0|,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离.又如式子|6﹣3|,它在数轴上的意义是表示6的点与表示3的点之间的距离.即点A、B在数轴上分别表示数a、b,则A、B两点的距离可表示为:|AB|=|a﹣b|.根据以上信息,回答下列问题:(1)数轴上表示2和5的两点之间的距离是;数轴上表示﹣3和15的两点之间的距离是;(2)点A、B在数轴上分别表示数x和﹣1.①用代数式表示A、B两点之间的距离;②如果|AB|=2,求x值.38.如图,有两段线段AB=2(单位长度),CD=1(单位长度)在数轴上运动.点A在数轴上表示的数是﹣12,点D在数轴上表示的数是15(1)点B在数轴上表示的数是,点C在数轴上表示的数是,线段BC=(2)若线段AB以1个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.设运动时间为t秒,若BC=6(单位长度),求t的值(3)若线段AB以1个单位长度/秒的速度向左匀速运动,同时线段CD以2个单位长度/秒的速度也向左运动.设运动时间为t秒,当0<t<24时,设M为AC中点,N为BD中点,则线段MN的长为.39.如图,点C在线段AB上,AC=12厘米,CB=8厘米,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AB=a厘米,其他条件不变,你能猜想MN的长度吗?用一句简洁的语言表述你发现的规律;(3)若C在线段AB的延长线上,且满足AB=b厘米,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.40.如图,A,B两点在数轴上,点A表示的数为﹣10,OB=4OA,点M以每秒2个单位长度的速度从点A开始向左运动,点N以每秒3个单位长度的速度从点B开始向左运动(点M和点N同时出发)(1)数轴上点B对应的数是线段AB的中点C对应的数是(2)经过几秒,点M,点N到原点的距离相等(3)当M运动到什么位置时,点M与点N相距20个单位长度?
七年级—线段的动点问题参考答案与试题解析一.解答题(共40小题)1.已知数轴上有A,B,C,D,E,F六个点,点C在原点位置,点B表示的数为﹣4,下表中A﹣B,B﹣C,D﹣C,E﹣D,F﹣E的含义为前一个点所表示的数与后一个点所表示的数的差,比如B﹣C为﹣4﹣0=﹣4.A﹣BB﹣CD﹣CE﹣DF﹣E10﹣4﹣1x2(1)在数轴上表示出A,D两点;(2)当点A与点F的距离为3时,求x的值;(3)当点M以每秒1个单位长度的速度从点B出发向左运动时,同时点N从点A出发,以每秒3个单位长度的速度向点C运动,到达点C后立即以同样的速度反方向运动,那么出发1或4秒钟时,点D到点M,点N的距离相等(直接写出答案).【解】(1)如图所示,∵点B表示的数为﹣4,点C在原点位置∴A:6,D:﹣1;(2)①当点F在点A左侧时,则点F表示的数为6﹣3=3,点E表示的数为3﹣2=1,∴x=1﹣(﹣1)=2;②当点F在点A右侧时,则点F表示的数为6+3=9,点E表示的数为9﹣2=7,∴x=7﹣(﹣1)=8;(3)设出发x秒后,点D到点M,点N的距离相等,由题意得:﹣1﹣(﹣4﹣x)=6﹣3x﹣(﹣1)或﹣1﹣(﹣4﹣x)=3x﹣6﹣(﹣1)解得:x=1或x=4故答案为:1或4.2.如图,在数轴上点A表示的数是﹣3,点B在点A的右侧,且到点A的距离是18;点C在点A与点B之间,且到点B的距离是到点A距离的2倍.(1)点B表示的数是15;点C表示的数是3;(2)若点P从点A出发,沿数轴以每秒4个单位长度的速度向右匀速运动;同时,点Q从点B出发,沿数轴以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒,在运动过程中,当t为何值时,点P与点Q之间的距离为6?(3)在(2)的条件下,若点P与点C之间的距离表示为PC,点Q与点B之间的距离表示为QB,在运动过程中,是否存在某一时刻使得PC+QB=4?若存在,请求出此时点P表示的数;若不存在,请说明理由.【解】(1)点B表示的数是﹣3+18=15;点C表示的数是﹣3+18×=3.故答案为:15,3;(2)点P与点Q相遇前,4t+2t=18﹣6,解得t=2;点P与点Q相遇后,4t+2t=18+6,解得t=4;(3)假设存在,当点P在点C左侧时,PC=6﹣4t,QB=2t,∵PC+QB=4,∴6﹣4t+2t=4,解得t=1.此时点P表示的数是1;当点P在点C右侧时,PC=4t﹣6,QB=2t,∵PC+QB=4,∴4t﹣6+2t=4,解得t=.此时点P表示的数是.综上所述,在运动过程中存在PC+QB=4,此时点P表示的数为1或.3.定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C在线段AB上,且AC:CB=1:2,则点C是线段AB的一个三等分点,显然,一条线段的三等分点有两个.(1)已知:如图2,DE=15cm,点P是DE的三等分点,求DP的长.(2)已知,线段AB=15cm,如图3,点P从点A出发以每秒1cm的速度在射线AB上向点B方向运动;点Q从点B出发,先向点A方向运动,当与点P重合后立马改变方向与点P同向而行且速度始终为每秒2cm,设运动时间为t秒.①若点P点Q同时出发,且当点P与点Q重合时,求t的值.②若点P点Q同时出发,且当点P是线段AQ的三等分点时,求t的值.【解】(1)当DP=2PE时,DP=DE=10cm;当2DP=PE时,DP=DE=5cm.综上所述:DP的长为5cm或10cm.(2)①根据题意得:(1+2)t=15,解得:t=5.答:当t=5秒时,点P与点Q重合.②(I)点P、Q重合前:当2AP=PQ时,有t+2t+2t=15,解得:t=3;当AP=2PQ时,有t+t+2t=15,解得:t=;(II)点P、Q重合后,当AP=2PQ时,有t=2(t﹣5),解得:t=10;当2AP=PQ时,有2t=(t﹣5),解得:t=﹣5(不合题意,舍去).综上所述:当t=3秒、秒或10秒时,点P是线段AQ的三等分点.4.如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?【解】(1)∵线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点,∴CM=AC=5厘米,CN=BC=3厘米,∴MN=CM+CN=8厘米;(2)∵点M,N分别是AC,BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=AC+BC=a;(3)①当0<t≤5时,C是线段PQ的中点,得10﹣2t=6﹣t,解得t=4;②当5<t≤时,P为线段CQ的中点,2t﹣10=16﹣3t,解得t=;③当<t≤6时,Q为线段PC的中点,6﹣t=3t﹣16,解得t=;④当6<t≤8时,C为线段PQ的中点,2t﹣10=t﹣6,解得t=4(舍),综上所述:t=4或或.5.【新知理解】如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.(1)线段的中点是这条线段的“巧点”;(填“是”或“不是”).(2)若AB=12cm,点C是线段AB的巧点,则AC=4或6或8cm;【解决问题】(3)如图②,已知AB=12cm.动点P从点A出发,以2cm/s的速度沿AB向点B匀速移动:点Q从点B出发,以1cm/s的速度沿BA向点A匀速移动,点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s).当t为何值时,A、P、Q三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由【解】(1)如图,当C是线段AB的中点,则AB=2AC,∴线段的中点是这条线段的“巧点”.故答案为:是;(2)∵AB=12cm,点C是线段AB的巧点,∴AC=12×=4cm或AC=12×=6cm或AC=12×=8cm;故答案为:4或6或8;(3)t秒后,AP=2t,AQ=12﹣t(0≤t≤6①由题意可知A不可能为P、Q两点的巧点,此情况排除.②当P为A、Q的巧点时,Ⅰ.AP=AQ,即,解得s;Ⅱ.AP=AQ,即,解得s;Ⅲ.AP=AQ,即,解得t=3s;③当Q为A、P的巧点时,Ⅰ.AQ=AP,即,解得s(舍去);Ⅱ.AQ=AP,即,解得t=6s;Ⅲ.AQ=AP,即,解得s.6.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.【问题情境】如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)填空:①A、B两点间的距离AB=10,线段AB的中点表示的数为3;②用含t的代数式表示:t秒后,点P表示的数为﹣2+3t;点Q表示的数为8﹣2t.(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;(3)求当t为何值时,PQ=AB;(4)若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.【解】(1)①10,3;②﹣2+3t,8﹣2t;(2)∵当P、Q两点相遇时,P、Q表示的数相等∴﹣2+3t=8﹣2t,解得:t=2,∴当t=2时,P、Q相遇,此时,﹣2+3t=﹣2+3×2=4,∴相遇点表示的数为4;(3)∵t秒后,点P表示的数﹣2+3t,点Q表示的数为8﹣2t,∴PQ=|(﹣2+3t)﹣(8﹣2t)|=|5t﹣10|,又PQ=AB=×10=5,∴|5t﹣10|=5,解得:t=1或3,∴当:t=1或3时,PQ=AB;(4)∵点M表示的数为=﹣2,点N表示的数为=+3,∴MN=|(﹣2)﹣(+3)|=|﹣2﹣﹣3|=5.7.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?请直接写出你的答案.(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.【解】(1)∵M、N分别是AC、BC的中点,∴MC=AC、CN=BC,∵AC=9cm,CB=6cm,∴MN=MC+CN=AC+BC=(AC+BC)=(9+6)=7.5cm;(2)∵M、N分别是AC、BC的中点,∴MC=AC、CN=BC,∵AC+CB=acm,∴MN=MC+CN=AC+CB=acm)=a(cm);(3)MN=b,如图,∵M、N分别是AC、BC的中点,∴MC=AC、CN=BC,∵AC﹣BC=bcm,∴MN=MC﹣CN=AC﹣BC=(AC﹣BC)=b.8.如图,B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动1次,C是线段BD的中点,AD=10cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,①AB=4cm.②求线段CD的长度.(2)①点B沿点A→D运动时,AB=2tcm;②点B沿点D→A运动时,AB=20﹣2tcm.(用含t的代数式表示AB的长)(3)在运动过程中,若AB中点为E,则EC的长是否变化,若不变,求出EC的长;若发生变化,请说明理由.【解】(1)当t=2时,①AB=2×2=4cm;②BD=AD﹣AB=10﹣4=6cm,由C是线段BD的中点,得CD=BD=×6=3cm;(2))①点B沿点A→D运动时,AB=2tcm;②点B沿点D→A运动时,AB=20﹣2tcm;(3)在运动过程中,若AB中点为E,则EC的长不变,由AB中点为E,C是线段BD的中点,得BE=AB,BC=BD.EC=BE+BC=(AB+BD)=×10=5cm.9.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.【解】(1)∵AC=9cm,点M是AC的中点,∴CM=0.5AC=4.5cm,∵BC=6cm,点N是BC的中点,∴CN=0.5BC=3cm,∴MN=CM+CN=7.5cm,∴线段MN的长度为7.5cm,(2)MN=a,当C为线段AB上一点,且M,N分别是AC,BC的中点,则存在MN=a,(3)当点C在线段AB的延长线时,如图:则AC>BC,∵M是AC的中点,∴CM=AC,∵点N是BC的中点,∴CN=BC,∴MN=CM﹣CN=(AC﹣BC)=b.10.已知线段AB=a,MN=b(a,b为常数,且a>2b),线段MN在直线AB上运动(点B、M在点A的右侧.点N在点M的右侧).点P是线段AB的中点,点Q是线段MN的中点.(1)如图1,当点N与点B重合时,求线段PQ的长度(用含a,b的代数式表示);(2)如图2,当线段MN运动到点B、M重合时,求线段AN、PQ之间的数量关系式;(3)当线段MN运动至点Q在点B的右侧时,请你画图探究线段AN、BM、PQ三者之间的数量关系式.【解】(1)∵点P是线段AB的中点,点Q是线段MN的中点∴PB=,QB=∵PQ=PB﹣QB∴PQ=(2)∵点P是线段AB的中点,点Q是线段MN的中点∴PB=,QB=∵PQ=PB﹣QB∴PQ=∵AN=AB+MN=a+b∴AN=2PQ(3)如上图所示:①当点M在点B的右侧时,AN=a+b﹣BM,PQ=a+b﹣BM,所以AN=2PQ+BM,②当点M在点B的左侧时,AN=a+b+BM,PQ=a+b+BM,故:AN=2PQ﹣BM,综上,AN=2PQ+BM或AN=2PQ﹣BM.11.如图,数轴上点A,B表示的有理数分别为﹣6,3,点P是射线AB上一个动点(不与点A,B重合).M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.(1)若点P表示的有理数是0,那么MN的长为6;若点P表示的有理数是6,那么MN的长为6.(2)点P在射线AB上运动(不与点A,B重合)的过程中,MN的长是否发生改变?若不改变,请写出求MN的长的过程;若改变,请说明理由.【解】(1)若点P表示的有理数是0(如图1),则AP=6,BP=3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=AP=4,NP=BP=2,∴MN=MP+NP=6;若点P表示的有理数是6(如图2),则AP=12,BP=3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=AP=8,NP=BP=2,∴MN=MP﹣NP=6.故答案为:6;6.(2)MN的长不会发生改变,理由如下:设点P表示的有理数是a(a>﹣6且a≠3).当﹣6<a<3时(如图1),AP=a+6,BP=3﹣a.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=AP=(a+6),NP=BP=(3﹣a),∴MN=MP+NP=6;当a>3时(如图2),AP=a+6,BP=a﹣3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=AP=(a+6),N=BP=(a﹣3),∴MN=MP﹣NP=6.综上所述:点P在射线AB上运动(不与点A,B重合)的过程中,MN的长为定值6.12.已知点C在线段AB上,且AC=6,BC=4,M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)如果AC=a,BC=b,其他条件不变,你能猜出MN的长度吗?(3)如果我们这样叙述它:“已知点C与线段AB在同一直线上,线段AC=6,BC=4,M,N分别是AC,BC的中点,求MN的长度.”结果会有变化吗?如果有,求出结果.【解】(1)∵AC=6,BC=4,点M,N分别是AC,BC的中点,∴MN=(AC+CB)=×10=5;(2)MN=,直线上相邻两线段中点间的距离为两线段长度和的一半;(3)如图,有变化,会出现两种情况:①当点C在线段AB上时,MN=(AC+BC)=5;②当点C在AB的延长线上时,MN=(AC﹣BC)=1.13.如图,C是线段AB上一点,AB=20cm,BC=8cm,点P从A出发,以2cm/s的速度沿AB向右运动,终点为B;点Q从点B出发,以1cm/s的速度沿BA向左运动,终点为A.已知P、Q同时出发,当其中一点到达终点时,另一点也随之停止运功.设点P运动时间为xs.(1)AC=12cm;(2)当x=s时,P、Q重合;(3)是否存在某一时刻,使得C、P、Q这三个点中,有一个点恰为另外两点所连线段的中点?若存在,求出所有满足条件的x的值;若不存在,请说明理由.【解】(1)AC=AB﹣BC=20﹣8=12(cm),(2)20÷(2+1)=(s).故当x=s时,P、Q重合;(3)存在,①C是线段PQ的中点,得2x+20﹣x=2×12,解得x=4;②P为线段CQ的中点,得12+20﹣x=2×2x,解得x=;③Q为线段PC的中点,得2x+12=2×(20﹣x),解得x=7;综上所述:x=4或x=或x=7.故答案为:12;.14.有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,A、B两点之间的距离是90米.甲、乙两机器人分别从A、B两点同时同向出发到终点C,乙机器人始终以50米/分的速度行走,乙行走9分钟到达C点.设两机器人出发时间为t(分钟),当t=3分钟时,甲追上乙.前4分钟甲机器人的速度保持不变,在4≤t≤6分钟时,甲的速度变为另一数值,且甲、乙两机器人之间的距离保持不变.请解答下面问题:(1)B、C两点之间的距离是450米.在4≤t≤6分钟时,甲机器人的速度为50米/分.(2)求甲机器人前3分钟的速度为多少米/分?(3)求两机器人前6分钟内出发多长时间相距28米?(4)若6分钟后,甲机器人的速度又恢复为原来出发时的速度,直接写出当t>6时,甲、乙两机器人之间的距离S.(用含t的代数式表示)【解】(1)∵乙机器人从B点出发,以50米/分的速度行走9分钟到达C点,∴B、C两点之间的距离是50×9=450(米).∵在4≤t≤6分钟时,甲、乙两机器人之间的距离保持不变,∴在4≤t≤6分钟时,甲机器人的速度为50米/分.(2)设甲机器人前3分钟的速度为x米/分,则3x﹣50×3=90,解得x=80.答:甲机器人前3分钟的速度为80米/分.(3)当t=4时,两人相距80﹣50=30米,且4≤t≤6时,两人相距总是30米.分三种情况说明:①甲在AB间时,90﹣80t+50t=28,解得t=>,此情形不存在.②甲乙均在B右侧,且甲在乙后时,90+50t﹣80t=28,解得t=.③甲乙均在B右侧,且乙在甲后时,80t﹣90﹣50t=28,解得t=.答:两机器人前6分钟内出发分钟或分钟相距28米.(4)S=.故答案为:450,50;15.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?并说明理由;【解】(1)∵点M、N分别是AC、BC的中点,AC=8cm,CB=6cm,∴CM=AC=4cm,CN=BC=3cm,∴MN=CM+CN=4+3=7cm,即线段MN的长是7cm;(2)∵点M、N分别是AC、BC的中点,AC+CB=acm,∴CM=AC,CN=BC,∴MN=CM+CN=AC+BC=(AC+BC)=acm,即线段MN的长是acm;(3)如图:MN=b,理由是:∵点M、N分别是AC、BC的中点,AC﹣CB=bcm,∴CM=AC,CN=BC,∴MN=CM﹣CN=AC﹣BC=(AC﹣BC)=bcm,即线段MN的长是bcm.16.(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.【解】(1)∵以点A为左端点向右的线段有:线段AB、AC、AD,以点C为左端点向右的线段有线段CD、CB,以点D为左端点的线段有线段DB,∴共有3+2+1=6条线段;(2)设线段上有m个点,该线段上共有线段x条,则x=(m﹣1)+(m﹣2)+(m﹣3)+…+3+2+1,∴倒序排列有x=1+2+3+…+(m﹣3)+(m﹣2)+(m﹣1),∴2x=m+m+m+…+m=m(m﹣1),∴x=m(m﹣1);(3)把45位同学看作直线上的45个点,每两位同学之间的一握手看作为一条线段,直线上45个点所构成的线段条数就等于握手的次数,因此一共要进行×45×(45﹣1)=990次握手.17.如图,点B、C是线段AD上的两点,点M和点N分别在线段AB和线段CD上.(1)当AD=8,MN=6,AM=BM,CN=DN时,BC=4;(2)若AD=a,MN=b①当AM=2BM,DN=2CN时,求BC的长度(用含a和b的代数式表示)②当AM=nBM,DN=nCN(n是正整数)时,直接写出BC=b﹣a.(用含a、b、n的代数式表示)【解】(1)∵AD=8,MN=6,∴AM+DN=AD﹣MN=8﹣6=2,∵AM=BM,CN=DN,∴AB+CD=2AM+2DN=4,∴BC=AD﹣(AB+CD)=8﹣4=4,故答案为4.(2)①∵AD=a,MN=b,∴AM+DN=AD﹣MN=a﹣b,∵AM=2BM,DN=2CN,∴AB+CD=(AM+DN)=(a﹣b),∴BC=AD﹣(AB+CD)=a﹣(a﹣b)=b﹣a.②∵AD=a,MN=b,∴AM+DN=AD﹣MN=a﹣b,∵AM=nBM,DN=nCN,∴AB+CD=(AM+DN)=(a﹣b),∴BC=AD﹣(AB+CD)=a﹣(a﹣b)=b﹣a.故答案为b﹣a.18.如图所示.(1)若线段AB=4cm,点C在线段AB上(如图①),点M、N分别是线段AC、BC的中点,求线段MN长.(2)若线段AB=acm,点C在线段AB的延长线上(如图②),点M、N分别是线段AC、BC的中点,你能猜想出MN的长度吗?请写出你的结论,并说明理由.【解】(1)∵点M,N分别是AC、BC的中点,AB=4cm,∴MC=AC,NC=BC,∴MN=MC+NC=(AC+BC)=AB=×4cm=2cm;(2)MN=acm,理由是:∵点M,N分别是AC、BC的中点,AB=acm,∴MC=AC,NC=BC,∴MN=MC﹣NC=(AC﹣BC)=AB=×acm=acm.19.如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A,B是数轴上的点,请参照如图回答下列问题:(1)如果点A表示数﹣3,将点A向右移动7个单位长度到达点B,那么终点B表示的数是4,A、B两点间的距离是7.(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度到达点B,那么终点B表示的数是1;A、B两点间的距离为2.(3)一般地,如果A点表示的数为a,将A点向右移动x个单位长度,再向左移动y个单位长度到达点B,请你求出终点B表示什么数?A、B两点间的距离为多少?【解】(1)∵点A表示数﹣3,∴点A向右移动7个单位长度,终点B表示的数是﹣3+7=4,A,B两点间的距离是|﹣3﹣4|=7;(2)∵点A表示数3,∴将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点表示的数是3﹣7+5=1,A,B两点间的距离为3﹣1=2;(3)∵A点表示的数为a,∴将A点向右移动x个单位长度,再向左移动y个单位长度,那么点B表示的数为(a+x﹣y),A,B两点间的距离为|x﹣y|,故答案为:(1)4,7;(2)1,2.20.已知多项式﹣2x2y﹣a+3xy2﹣4y+5次数是4,项数是b,数轴上A、B两点所对应的数分别是a和b.(1)填空:a=﹣2,b=4,并在数轴上标出A、B两点的位置.(2)数轴上是否存在点C,C点在A点的右侧,且点C到A点的距离是点C到B点的距离的2倍?若存在,请求出点C表示的数;若不存在,请说明理由.(3)点D以每秒2个单位的速度从A点出发向左运动,同时点E以3个单位每秒的速度从B点出发向右运动,点F以每秒4个单位的速度从O点出发向左运动.若P为DE的中点,DE=16,求PF的长.【解】(1)由多项式﹣2x2y﹣a+3xy2﹣4y+5次数是4,项数是b,知a=﹣2,b=4,数轴表示图如上;(2)设点C位置为x,有题意得:x+2=2|4﹣x|,解得:x=2或10;(3)设:t秒时,各点位置如上图所示,其中,AD=2t,OF=4t,BE=3t,则:DE=AD+AO+AB+BE=2t+2+4+3t=16,解得:t=2,则PD=8,DF=OF﹣OD=4t﹣(2+2t)=2t﹣2=2,PF=PD+DF=8+2=10,答:PF的长为10.21.如图,M是定长线段AB上一个定点,点C在线段AM上,点D在线段BM上.点C、点D分别从点M、点B出发,分别以1cm/s、2cm/s的速度沿直线BA左运动,运动方向如箭头所示.(1)若AB=20cm,当点C、D运动了2s时,求AC+MD的长度;(2)若点C、D运动时,总有MD=2AC,若AM=ncm,求AB的长;(3)在(2)的条件下,N是直线AB上一点,且MN+BN=AN,求的值.【解】(1)AC+MD=AB﹣NC﹣BD=20﹣2﹣4=14(cm);(2)设BM=x,由题意x﹣2t=2(n﹣t),∴x=2n,∴AB=AM+BM=3n.(3)①当点N在线段BM上时,设MN=y,由题意:y+2n﹣y=n+y,解得y=n,∴MN=n,AB=3n,∴=3.②当点N在AB的延长线上时,设MN=z,由题意:z+z﹣2n=n+z,解得z=3n,∴MN=AB=3n,∴=1,22.如图,C是线段AB上一点,AB=16cm,BC=6cm.(1)AC=10cm;(2)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B;点Q以1cm/s的速度沿BA向左运动,终点为A.当一个点到达终点,另一个点也随之停止运动.求运动多少秒时,C、P、Q三点,有一点恰好是以另两点为端点的线段的中点?【解】(1)AC=AB﹣BC=16﹣6=10cm,故答案为:10;(2)①当0<t≤5时,C是线段PQ的中点,得10﹣2t=6﹣t,解得t=4;②当5<t≤时,P为线段CQ的中点,2t﹣10=16﹣3t,解得t=;③当<t≤6时,Q为线段PC的中点,6﹣t=3t﹣16,解得t=;④当6<t≤8时,C为线段PQ的中点,2t﹣10=t﹣6,解得t=4(舍),综上所述:t=4或或.23.如图,数轴上A,B两点对应的有理数分别为﹣10和20,点P从点O出发,以每秒1个单位长度的速度沿数轴正方向匀速运动,点Q同时从点A出发,以每秒2个单位长度的速度沿数轴正方向匀速运动,设运动时间为t秒.(1)分别求当t=2及t=12时,对应的线段PQ的长度;(2)当PQ=5时,求所有符合条件的t的值,并求出此时点Q所对应的数;(3)若点P一直沿数轴的正方向运动,点Q运动到点B时,立即改变运动方向,沿数轴的负方向运动,到达点A时,随即停止运动,在点Q的整个运动过程中,是否存在合适的t值,使得PQ=8?若存在,求出所有符合条件的t值,若不存在,请说明理由.【解】(1)当运动时间为t秒时,点P对应的数为t,点Q对应的数为2t﹣10,∴PQ=|t﹣(2t﹣10)|=|t﹣10|.当t=2时,PQ=|2﹣10|=8;当t=12时,PQ=|12﹣10|=2.答:当t=2时,线段PQ的长度为8;当t=12时,线段PQ的长度为2.(2)根据题意得:|t﹣10|=5,解得:t=5或t=15,当t=5时,点Q对应的数为2t﹣10=0;当t=15时,点Q对应的数为2t﹣10=20.答:当PQ=5时,t的值为5或15,此时点Q所对应的数为0或20.(3)当运动时间为t秒时,点P对应的数为t,点Q对应的数为.当0<t≤15时,PQ=|t﹣(2t﹣10)|=|t﹣10|,|t﹣10|=8,解得:t1=2,t2=18(舍去);当15<t≤30时,PQ=|t﹣[20﹣2(t﹣15)]|=|3t﹣50|,|3t﹣50|=8,解得:t3=,t4=14(舍去).综上所述:在点Q的整个运动过程中,存在合适的t值,使得PQ=8,此时t的值为2或.24.已知数轴上有A、B、C三个点,分别表示有理数﹣24,﹣10,8,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=t,PC=32﹣t;(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由【解】(1)∵动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒,∴P到点A的距离为:PA=t,P到点C的距离为:PC=(24+8)﹣t=32﹣t;故答案为:t,32﹣t;(2)如图1,当P点在Q点右侧,且Q点还没有追上P点时,3(t﹣14)+2=t解得:t=20,∴此时点P表示的数为﹣4,如图2,当P点在Q点左侧,且Q点追上P点后,相距2个单位,3(t﹣14)﹣2=t解得:t=22,∴此时点P表示的数为﹣2,如图3,当Q点到达C点后,当P点在Q点左侧时,t+2+3(t﹣14)﹣32=32解得:t=26,∴此时点P表示的数为2,如图4,当Q点到达C点后,当P点在Q点右侧时,t﹣2+3(t﹣14)﹣32=32,解得:t=27,∴此时点P表示的数为3,综上所述:点P表示的数为﹣4,﹣2,2,3.25.如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A,B是数轴上的点,请参照下图并思考,完成下列各题.(1)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是1,A,B两点间的距离为2(2)如果点A表示数﹣4,将A点向右移动68个单位长度,再向左移动156个单位长度,那么终点B表示的数是﹣92,A,B两点间的距离是88.(3)一般地,如果A点表示数为m,将A点向右移动n个单位长度,再向左移动P个单位长度,那么,请你猜想终点B表示什么数?A,B两点间的距离为多少?【解】(1)∵点A表示数3,∴将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点表示的数是3﹣7+5=1,A,B两点间的距离为3﹣1=2;故答案为:1,2;(2)∵点A表示数﹣4,∴将A点向右移动68个单位长度,再向左移动156个单位长度,那么终点B表示的数是﹣4+68﹣156=﹣92,A、B两点间的距离是|﹣4+92|=88;故答案为:﹣92,88;(3)∵A点表示的数为m,∴将A点向右移动n个单位长度,再向左移动p个单位长度,那么点B表示的数为(m+n﹣p),A,B两点间的距离为|n﹣p|.26.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是﹣14;点P表示的数是8﹣5t(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.【解】(1)∵点A表示的数为8,B在A点左边,AB=22,∴点B表示的数是8﹣22=﹣14,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数是8﹣5t.故答案为:﹣14,8﹣5t;(2)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=22,解得:x=11,∴点P运动11秒时追上点Q;(3)线段MN的长度不发生变化,都等于11;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=×22=11,②当点P运动到点B的左侧时:MN=MP﹣NP=AP﹣BP=(AP﹣BP)=AB=11,∴线段MN的长度不发生变化,其值为11.27.在数轴上点A表示的数是8,B是数轴上一点,且AB=12,动点P从点A出发,以每秒6个单位长度的速度沿数轴向左运动,设运动时间为t(t>0)秒.(1)①写出数轴上点B表示的数,②写出点P表示的数(用含t的代数式表示)(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速前进,若点P,Q同时出发,问点P运动多少秒时追上点Q?(3)在(2)的情况下,若M为AP的中点,N为PB的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请画出图形,并求出线段MN的长..【解】(1)①8﹣12=﹣4,8=12=20,∴数轴上点B表示的数﹣4或20,②动点P从点A出发,以每秒6个单位长度的速度沿数轴向左运动,则点P表示的数8﹣6t;(2)分两种情况:当点B在点A的左侧时,点P运动追上点Q,即8﹣6t=﹣4﹣4t,解得t=6;当点B在点A的右侧时,点P运动追上点Q,即8﹣6t=20﹣4t,解得t=﹣6(舍去),∴点P运动6秒追上点Q;(3)分两种情况:①若点P在AB之间运动,则∵M为AP的中点,N为PB的中点,∴PM=AP,PN=BP,∴MN=PM+PN=(AP+BP)=AB=6;②若点P在AB的延长线上运动,则∵M为AP的中点,N为PB的中点,∴PM=AP,PN=BP,∴MN=PM﹣PN=(AP﹣BP)=AB=6;综上所述,点P在运动的过程中,MN的长度不会发生变化.28.如图,点A、B和线段CD都在数轴上,点A、C、D、B起始位置所表示的数分别为﹣2、0、3、12;线段CD沿数轴的正方向以每秒1个单位的速度移动,移动时间为t秒.(1)当t=0秒时,AC的长为2,当t=2秒时,AC的长为4.(2)用含有t的代数式表示AC的长为t+2.(3)当t=6秒时AC﹣BD=5,当t=11秒时AC+BD=15.(4)若点A与线段CD同时出发沿数轴的正方向移动,点A的速度为每秒2个单位,在移动过程中,是否存在某一时刻使得AC=2BD,若存在,请求出t的值;若不存在,请说明理由.【解】(1)当t=0秒时,AC=|﹣2﹣0|=|﹣2|=2;当t=2秒时,移动后C表示的数为2,∴AC=|﹣2﹣2|=4.故答案为:2;4.(2)点A表示的数为﹣2,点C表示的数为t;∴AC=|﹣2﹣t|=t+2.故答案为t+2.(3)∵t秒后点C运动的距离为t个单位长度,点D运动的距离为t个单位长度,∴C表示的数是t,D表示的数是3+t,∴AC=t+2,BD=|12﹣(3+t)|,∵AC﹣BD=5,∴t+2﹣|12﹣(t+3)|=5.解得:t=6.∴当t=6秒时AC﹣BD=5;∵AC+BD=15,∴t+2+|12﹣(t+3)|=15,t=11;当t=11秒时AC+BD=15,故答案为6,11;(4)假设能相等,则点A表示的数为2t﹣2,C表示的数为t,D表示的数为t+3,B表示的数为12,∴AC=|2t﹣2﹣t|=|t﹣2|,BD=|t+3﹣12|=|t﹣9|,∵AC=2BD,∴|t﹣2|=2|t﹣9|,解得:t1=16,t2=.故在运动的过程中使得AC=2BD,此时运动的时间为16秒和秒.29.如图,数轴上的点O和A分别表示0和10,点P是线段OA上一动点,沿O→A→O以每秒2个单位的速度往返运动1次,B是线段OA的中点,设点P运动时间为t秒(0≤t≤10).(1)线段BA的长度为5;(2)当t=3时,点P所表示的数是6;(3)求动点P所表示的数(用含t的代数式表示);(4)在运动过程中,若OP中点为Q,则QB的长度是否发生变化?若不变,请求出它的值;若变化,请直接用含t的代数式QB的长度.【解】(1)∵B是线段OA的中点,∴BA=OA=5;故答案为:5;(2)当t=3时,点P所表示的数是2×3=6,故答案为:6;(3)当0≤t≤5时,动点P所表示的数是2t,当5≤t≤10时,动点P所表示的数是20﹣2t;(4)QB的长度发生变化,当0≤t≤5时,QB=5﹣t,当5≤t≤10时,QB=5﹣(20﹣2t)=t﹣5.30.(1)观察思考如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行多少场比赛?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.【解】(1)∵以点A为左端点向右的线段有:线段AB、AC、AD,以点C为左端点向右的线段有线段CD、CB,以点D为左端点的线段有线段DB,∴共有3+2+1=6条线段;(2),理由:设线段上有m个点,该线段上共有线段x条,则x=(m﹣1)+(m﹣2)+(m﹣3)+…+3+2+1,∴倒序排列有x=1+2+3+…+(m﹣3)+(m﹣2)+(m﹣1),∴2x==m(m﹣1),∴x=;(3)把8位同学看作直线上的8个点,每两位同学之间的一场比赛看作为一条线段,直线上8个点所构成的线段条数就等于比赛的场数,因此一共要进行=28场比赛.31.在射线OM上有三点A,B,C,满足OA=15cm,AB=30cm,BC=10cm,点P从点O出发,沿OM方向以1cm/s的速度匀速运动;点Q从点C出发,沿线段CO匀速向点O运动(点Q运动到点O时停止运动).如果两点同时出发,请你回答下列问题:(1)已知点P和点Q重合时PA=AB,求OP的长度;(2)在(1)题的条件下,求点Q的运动速度.【解】(1)∵PA=AB,AB=30cm,∴PA=×30=20cm,∵OA=15cm,∴OP=OA+AP=35cm,(2)∵OC=OA+AB+BC,OA=15cm,AB=30cm,BC=10cm,∴OC=15+30+10=55cm,∵CP=OC﹣OP=55﹣35=20cm,∵P以1cm/s的速度匀速运动,∴点P运动的时间为35s,点Q运动的时间为35s,∴点Q的速度==cm/s.32.如图,已知数轴上A、B两点所表示的数分别为﹣2和8.(1)求线段AB的长;(2)已知点P为数轴上点A左侧的一点,且M为PA的中点,N为PB的中点.请你画出图形,观察MN的长度是否发生改变?若不变,求出线段MN的长;若改变,请说明理由.【解】(1)∵A,B两点所表示的数分别为﹣2和8,∴OA=2,OB=8,AB=OA+OB=10.(2)如图,线段MN的长度不发生变化,其值为5.理由如下:∵M为PA的中点,N为PB的中点,∴NP=BP,MP=AP,∴AB=5.33.如图,已知数轴上的点A对应的数为6,B是数轴上的一点,且AB=10,动点P从点A出发,以每秒6个单位长度的速度沿着数轴向左匀速运动,设运动时间为t秒(t>0).(1)数轴上点B对应的数是﹣4,点P对应的数是6﹣6t(用t的式子表示);(2)动点Q从点B与点P同时出发,以每秒4个单位长度的速度沿着数轴向左匀速运动,试问:运动多少时间点P可以追上点Q?(3)M是AP的中点,N是PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若有变化,说明理由;若没有变化,请你画出图形,并求出MN的长.【解】(1)由题可得,B点表示的数为6﹣10=﹣4;点P表示的数为6﹣6t;故答案为:﹣4,6﹣6t;(2)设点P运动x秒时,在点C处追上点Q(如图),则AC=6x,BC=4x,∵AC﹣BC=AB,∴6x﹣4x=10,解得:x=5,∴点P运动5秒时,在点C处追上点Q;(3)线段MN的长度不发生变化,等于5.理由如下:分两种情况:①当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5;②当点P运动到点B的左侧时:MN=MP﹣NP=AP﹣BP=(AP﹣BP)=AB=5,∴综上所述,线段MN的长度不发生变化,其值为5.34.如图,射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm,点P从点O出发,沿OM方向以1cm/秒的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.(1)当点P运动到线段AB上时,分别取OP和AB的中点E、F,=2.(2)若点Q运动速度为3cm/秒,经过5或70秒P、Q两点相距70cm.【解】设运动时间为t秒.(1)当20≤t≤80时,AP=(t﹣20)cm,OE=OP=tcm,OF=OA+AB=50cm,∴EF=OF﹣OE=(50﹣t)cm,∴==2.故答案为:2.(2)当0≤t≤30时,OP=tcm,OQ=(90﹣3t)cm,根据题意得:|OP﹣OQ|=70,即|t﹣(90﹣3t)|=70,解得:t=5或t=40(不合题意,舍去);当t>30时,OP=tcm,OQ=0cm,根据题意得:|OP﹣OQ|=70,即t=70.综上所述:经过5秒或70秒P、Q两点相距70cm.故答案为:5或70.35.如图,先在数轴上画出表示点A的相反数的点B,再把点A向右移动10个单位,得到点C.(1)点B表示的数为﹣5;点C表示的数为15;B、C两点之间的距离为20
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 低空经济产业园建设项目创新设计方案
- 大学和市政府的合作协议
- 离婚后房产割协议书
- 爱眼护眼主题校园活动策划方案
- 学期主题活动与实施计划
- 理财教育的价值与意义试题及答案
- 网络编辑师项目管理试题及答案
- 班主任的学生交流指导计划
- 优化项目管理的策略计划
- 提升团队士气的具体措施计划
- 2025-2030氧化铈纳米粒子行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 2024年青岛西海岸新区教育和体育系统招聘工作人员考试真题
- 2025年货运检查员职业技能鉴定参考试题库(含答案)
- 光伏电站安全培训
- 呼和浩特2025年内蒙古呼和浩特市融媒体中心第二批人才引进20人笔试历年参考题库附带答案详解
- 非心脏手术患者围术期低血压的管理策略
- 新版2025心肺复苏术指南
- 小学生战斗机知识
- 网络借贷信用评级模型-深度研究
- 眼科检查法课件
- 2025年济源职业技术学院单招职业技能测试题库学生专用
评论
0/150
提交评论