版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
复杂网络第二讲
网络拓扑基本模型及其性质李凯凯规则网络随机图小世界网络模型无标度网络模型局域世界演化网络模型模块性与等级网络复杂网络的自相似性规则网络系统中节点及其与边的关系是固定的。
(a)全局耦合网络;(b)最近邻耦合网络;(c)星形网络
全局耦合网络具有最小的平均路径长度Lgc=1和最大的聚类系数Cgc=1;最近邻耦合网络:包含N个围成一个环的点,其中每个节点都与它左右各K/2个邻居点相连(K为偶数),对于较大的K值,最近邻耦合网络的聚类系数为因此,这样的网络是高度聚类的。对于固定的K值,网络平均路径长度为
星形耦合网络:有一个中心点,其余N-1个点都只与这个中心点连接,其平均路径长度为
聚类系数为随机图随机图是与规则网络相反的网络,一个典型模型是Erdos和Renyi于40多年前开始研究的随机图模型。假设有大量的纽扣(N》1)散落在地上,并以相同的概率p给每对纽扣系上一根线。这样就会得到一个有N个节点,约pN(N-1)/2条边的ER随机图的实例。ER随机图的性质随机图理论的一个主要研究课题是:当概率p为多大时,随机图会产生一些特殊的属性?Erdos和Renyi系统地研究了当时,ER随机图的性质与概率p之间的关系,他们采用了如下定义:如果当
时产生一个具有性质Q的ER随机图的概率为1,那么就称几乎每一个ER随机图都具有性质Q。Erdos和Renyi的最重要的发现时ER随机图具有如下的涌现或相变性质:ER随机图的许多重要的性质都是突然涌现的。也就是说,对于任意给定的概率p,要么几乎每一个图都具有性质Q,要么几乎每一个图都不具有该性质。上述纽扣网络,如果p大于某个临界值,那么几乎每一个随机图都是连通的。ER随机图的平均度是,平均路径长度。LER为网络规模的对数增长函数是典型的小世界特征。ER随机图的聚类系数是C=p=<k>/N《1,这意味着大规模的稀疏ER随机图没有聚类特性。实际网络的聚类系数要比相同规模的ER随机图的聚类系数要高得多。ER随机图的度分布可用Poission分布来表示:因此,ER随机图也称为“Poission随机图”。小世界网络模型作为从完全规则网络向完全随机图的过渡,Watts和Strogtz于1998年引入了一个小世界网络模型,称为WS小世界模型。其构造算法如下:①从规则图开始:考虑一个含有N个点的最近邻耦合网络,它们围成一个环,其中每个节点都与它左右相邻的各K/2个节点相连,K是偶数。②随机化重连:以概率p随机地重连网络中的每个边,即将边的一个端点保持不变,而另一个端点取为网络中随机选择的一个节点。其中规定,任意两个不同节点之-间至多只能有一条边,并且每一个节点都不能有边与自身相连。P=0对应于完全规则网络,p=1对应于完全随机网络。具有较短的平均路径长度又具有较高的聚类系数的网络就称为小世界网络。Newman和Watts提出了NW小世界模型,用“随机化加边”取代WS小世界模型构造中的“随机化重连”。算法如下:①从规则图开始:含有N个节点的最近邻耦合网络。②随机化加边:以概率P在随机选取的一对节点之间加上一条边。NW小世界模型中,p=0对应于原来的最近邻耦合网络,p=1对应于全局耦合网络。小世界网络的性质1.聚类系数WS小世界网络的聚类系数为NW小世界网络的聚类系数为2.平均路径长度其中f(u)为一普适标度函数,满足Newman等人基于平均场方法给出了如下近似表达式:3.度分布在基于“随机化加边”机制的NW小世界模型中,每个节点的度至少为K,因此当时,一个随机选取的节点的度为k的概率为:而当k<K时,P(k)=0。无标度网络模型研究发现许多复杂网络的连接度分布函数具有幂律形式,由于这类网络的节点的连接度没有明显的特征长度,故称为无标度网络。Barabasi和Albert提出了一个无标度网络模型,称为BA模型。该模型考虑到了实际网络的两个重要特性:①增长特性;②优先连接特性。基于这两个特性,BA无标度网络模型构造算法如下:①增长:从一个具有m0个节点的网络开始,每次引入一个新的节点,并且连到m个已存在的节点上,这里。②优先连接:一个新节点与一个已经存在的节点i相连接的概率与节点i的度ki,节点j的度kj之间满足如下关系:无标度网络的性质1.平均路径长度,表明该网络具有小世界特性。2.聚类系数3.度分布BA无标度网络的度分布函数为这表明BA无标度网络的度分布函数可由幂指数为3的幂律函数近似描述。幂律分布函数的无标度性质:考虑一个概率分布函数f(x),如果对任意给定常数a,存在常数b使得函数f(x)满足如下“无标度条件”:f(ax)=bf(x)那么必有(假定)也就是说,幂律分布函数是唯一满足“无标度条件”的概率分布函数。鲁棒性与脆弱性假定一个网络,每次从该网络中移走一个节点,同时移走与该节点相连的所有边,从而可能使得网络中其他节点之间的一些路径被中断,如果在节点i和节点j之间有多条路径,中断其中一些路径可能会使这两个节点之间的距离增大,从而整个网络的平均路径长度也会增大,而如果节点i和节点j之间的所有路径都被中断,那么这两个节点之间就不再连通了。如果在移走少量节点后网络中的绝大部分节点仍是连通的,那么就称该网络对节点故障具有鲁棒性。比较ER随机图和BA无标度网络的连通性对节点去除的鲁棒性,考虑两类节点去除策略:一是随机故障策略,即完全随机地去除网络中的一部分节点;二是蓄意攻击策略,即从去除网络中度最高的节点开始,有意识地去除网络中一部分度最高的节点。无标度网络对随机图故障具有极高的鲁棒性:这种高度鲁棒性来自于网络度分布的极端非均匀性,然而,正是这种网络度分布的非均匀性使得无标度网络对蓄意攻击具有高度的脆弱性。对随机故障的鲁棒性和对蓄意攻击的脆弱性是无标度网络的一个基本特征。事实上,科学家研究表明,“鲁棒但又脆弱”是复杂系统的最重要和最基本的特征之一。假设去除的节点数占原始网络总节点数的比例为f,可以用最大联通子图的相对大小S和平均路径和长度l与f的关系来度量网络的鲁棒性,研究发现,ER随机图和BA无标度网络之间存在及其显著的差异性。适应度模型BA模型只能生产度分布幂律指数固定为3的无标度网络,实际网络的幂律指数则不尽相同,且大都属于2至3的范围内。2000年,Jeng等人在《Nature》上发表的文章中对43种生物体组织的新陈代谢过程加以研究,他们以各种基质(如ADP)为节点,以基质参与的某种化学反应为边构建了新陈代谢的复杂网络,结果显示,这些网络的度分布都服从幂律分布,幂指数在2.0~2.4之间。在BA无标度网络的增长过程中,节点的度也在发生变化并且满足如下幂律关系。其中是第i个节点在时刻t的度,是第i个节点加入到网络中的时刻,上式表明,在BA无标度网络中,越老的节点具有越高的度,然而,在许多实际网络中,节点的度及其增长速度并非只与该节点的年龄有关,有时是与节点的内在性质有关的,如个人的交友能力,WWW站点的内容和科研论文的质量等,Bianconi和Barabasi把这一性质称为节点的适应度,并据此提出了适应度模型,其构造算法如下:①增长:从一个具有m0个节点的网络开始,每次引入一个新的节点并且连到m个已存在的节点上,这里。每个节点的适应度按概率分布选取。②优先连接:一个新节点与一个已经存在的节点i相连接的概率,与节点i的度ki,节点j的度kj和适应度之间满足如下关系可见,适应度模型与BA无标度模型的区别在于,在适应度模型中的优先连接概率与节点的度和适应度之积成正比,而不是仅与节点的度成正比,这样,在适应度模型中,如果一个年轻的节点具有的较高的适应度,那么该节点就有可能在随后的网络演化过程中获取更多的边。
局域世界演化网络模型在许多实际网络中,每个节点都有各自的局域世界,研究者们建立了局域世界演化网络模型,其构造算法如下:①增长:网络初始时有m0个节点和e0条边,每次新加入一个节点和附带的m条边。②局域世界优先连接:随机地从网络已有的节点中选取M个节点(),作为新加入节点的局域世界,新加入的节点根据优先连接概率来选择与局域世界中的m个节点相连,其中LW是由新选择的M个节点组成。在t时刻,,因此上述局域世界演化网络模型有两个特殊情形:M=m和M=t+m0。(1)特殊情形A:M=m这时,新加入的节点与其局域世界中所有的节点相连接,这等价于BA无标度网络模型中只保留增长机制而没有优先连接。此时,第i个节点的度的变化率为网络度分布服从指数分布(2)特殊情形B:M=t+m0在这种特殊情形,每个节点的局域世界其实就是整个网络,因此,局域世界模型就完全等价于BA无标度网络模型。模块性与等级网络模块(module)与模体(motif)模块是指一组物理上或功能上连接在一起的、共同完成一个相对独立功能的节点。模体可能是复杂网络的基本模块。网络的高聚类性表明网络可能包含由高度连接的节点构成的子图。如三角形,正方形和五角形,其中一些子图所占的比例明显高于同一网络的完全随机化形式中这些子图所占的比例。这些子图就称为模体。判断实际网络中的一个子图i是否为模体的依据如下:①该子图在与实际网络对应的随机化网络中出现的次数大于它在实际网络中出现的次数的概率是很小的,通常要求这个概率要小于某个阈值P(如P=0.01)②该子图在实际网络中出现的次数Nreali不小于某个下限U(如U=4).③该子图在实际网络中出现的次数Nreali明显高于它在随机化网络中出现的次数Nrandi,一般要求Nreali>1.1Nrandi
。等级网络
等级网络具有与网络规模无关的较高的聚类系数,等级模块性的一个最重要的量化标志是节点聚类系数服从幂律。这表明度很小的节点具有较高的聚类系数,相反度很高的节点具有低的聚类系数,其作用只是把不同的模块连接起来。ER随机图和BA无标度网络都不具有等级拓扑,在这两类网络中节点的聚类系数C(k)与该节点的度k无关。复杂网络的自相似性等级网络看上去有一个明显的特征,就是该网络部分与整体具有很明显的相似性,即自相似性,正是分形的一个基本特征。
Sierpinski三角形:复杂网络的小世界特征意味着网络的平均路径长度l可以用网络规模N的对数函数来表示,即,等价于其中L0表示特征长度,上式意味着网络规模是网络平均路径长度的指数函数。而自相似性要求满足某种幂律关系,然而,Song等人的研究指出,许多实际网络,包括WWW,蛋白质交互作用网络和细胞网络等,在某种长度-标度下确实是自相似的。与自相似性密切相关的一个概念是分数维,计算自相似分形的维数的一种常用的方法是盒记数法。基本思想是用边长为lB的盒子来覆盖该图形,并统计完全覆盖该图形需要的最少的盒子数NB(lB)图形维数的近似计算公式为等价地有幂律标度公式例:对于Sierpinski三角形,假设这个大三角形的边长为1,如果用边长为1/2的正方形覆盖Sierpinski三角形,那么需要3个正方形,如果用边长为1/4的正
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 老年人心理健康建设
- 电力工程规划讲解课件
- 马湖风景名胜区规划
- 怎讲好职业规划课件
- 电商成功案例分析-三只松鼠
- 人物简笔画教程课件
- 基本养老金核定表、职工退休、退职审批表
- 护理教学模式优化现状
- 综合管廊知识
- 嵌入式系统原理与应用-基于Cortex-A53微处理器 课件 第2章 Linux基本操作
- 2023-2024学年浙江省乐清市小学语文四年级期末通关测试题
- 证据材料目录证据清单范本-证据清单范本
- 钢结构构件安装钢柱质量检验评定表
- GB/T 5744-2008船用快关阀
- 原地单手肩上投篮
- GB/T 12232-1989通用阀门法兰连接铁制闸阀
- GB 20464-2006农作物种子标签通则
- 2023年油库储运操作规程
- 模仿式二声部课件
- 使用Pandas进行数据分析课件
- 《骨折概论》课件
评论
0/150
提交评论