2023-2024学年安徽省滁州来安县重点名校中考联考数学试卷含解析_第1页
2023-2024学年安徽省滁州来安县重点名校中考联考数学试卷含解析_第2页
2023-2024学年安徽省滁州来安县重点名校中考联考数学试卷含解析_第3页
2023-2024学年安徽省滁州来安县重点名校中考联考数学试卷含解析_第4页
2023-2024学年安徽省滁州来安县重点名校中考联考数学试卷含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年安徽省滁州来安县重点名校中考联考数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.一、单选题点P(2,﹣1)关于原点对称的点P′的坐标是()A.(﹣2,1) B.(﹣2,﹣1) C.(﹣1,2) D.(1,﹣2)2.如图,四边形ABCD是边长为1的正方形,动点E、F分别从点C,D出发,以相同速度分别沿CB,DC运动(点E到达C时,两点同时停止运动).连接AE,BF交于点P,过点P分别作PM∥CD,PN∥BC,则线段MN的长度的最小值为()A. B. C. D.13.计算的值()A.1 B. C.3 D.4.如果t>0,那么a+t与a的大小关系是()A.a+t>aB.a+t<aC.a+t≥aD.不能确定5.下面说法正确的个数有()①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;④如果∠A=∠B=12⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;⑥在△ABC中,若∠A+∠B=∠C,则此三角形是直角三角形.A.3个B.4个C.5个D.6个6.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为()A.0.7米 B.1.5米 C.2.2米 D.2.4米7.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是()A. B. C. D.8.甲、乙两盒中分别放入编号为1、2、3、4的形状相同的4个小球,从甲盒中任意摸出一球,再从乙盒中任意摸出一球,将两球编号数相加得到一个数,则得到数()的概率最大.A.3 B.4 C.5 D.69.如图所示的四边形,与选项中的一个四边形相似,这个四边形是()A. B. C. D.10.下列图形中,线段MN的长度表示点M到直线l的距离的是()A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.解不等式组请结合题意填空,完成本题的解答.(1)解不等式①,得________;(2)解不等式②,得________;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为___________.12.若关于x的方程x2﹣8x+m=0有两个相等的实数根,则m=_____.13.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°,CD是⊙O的切线:若⊙O的半径为2,则图中阴影部分的面积为_____.14.如图,在直角坐标系中,⊙A的圆心A的坐标为(1,0),半径为1,点P为直线y=x+3上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的最小值是______________.15.如图,在3×3的方格中,A、B、C、D、E、F分别位于格点上,从C、D、E、F四点中任取一点,与点A、B为顶点作三角形,则所作三角形为等腰三角形的概率是__.16.在平面直角坐标系xOy中,位于第一象限内的点A(1,2)在x轴上的正投影为点A′,则cos∠AOA′=__.三、解答题(共8题,共72分)17.(8分)如图,在平面直角坐标系中,直线y=kx+3与轴、轴分别相交于点A、B,并与抛物线的对称轴交于点,抛物线的顶点是点.(1)求k和b的值;(2)点G是轴上一点,且以点、C、为顶点的三角形与△相似,求点G的坐标;(3)在抛物线上是否存在点E:它关于直线AB的对称点F恰好在y轴上.如果存在,直接写出点E的坐标,如果不存在,试说明理由.18.(8分)今年义乌市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?19.(8分)已知:在△ABC中,AC=BC,D,E,F分别是AB,AC,CB的中点.求证:四边形DECF是菱形.20.(8分)小王上周五在股市以收盘价(收市时的价格)每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)星期一二三四五每股涨跌(元)+2﹣1.4+0.9﹣1.8+0.5根据上表回答问题:(1)星期二收盘时,该股票每股多少元?(2)周内该股票收盘时的最高价,最低价分别是多少?(3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费.若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?21.(8分)已知二次函数y=a(x+m)2的顶点坐标为(﹣1,0),且过点A(﹣2,﹣).(1)求这个二次函数的解析式;(2)点B(2,﹣2)在这个函数图象上吗?(3)你能通过左,右平移函数图象,使它过点B吗?若能,请写出平移方案.22.(10分)如图,在平面直角坐标系中,直线经过点和,双曲线经过点B.(1)求直线和双曲线的函数表达式;(2)点C从点A出发,沿过点A与y轴平行的直线向下运动,速度为每秒1个单位长度,点C的运动时间为t(0<t<12),连接BC,作BD⊥BC交x轴于点D,连接CD,①当点C在双曲线上时,求t的值;②在0<t<6范围内,∠BCD的大小如果发生变化,求tan∠BCD的变化范围;如果不发生变化,求tan∠BCD的值;③当时,请直接写出t的值.23.(12分)如图,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在一象限,点P(t,0)是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,连接OD,PD,得△OPD。(1)当t=时,求DP的长(2)在点P运动过程中,依照条件所形成的△OPD面积为S①当t>0时,求S与t之间的函数关系式②当t≤0时,要使s=,请直接写出所有符合条件的点P的坐标.24.我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.王老师采取的调查方式是(填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共件,其中b班征集到作品件,请把图2补充完整;王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率.

参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】

根据“关于原点对称的点,横坐标与纵坐标都互为相反数”解答.【详解】解:点P(2,-1)关于原点对称的点的坐标是(-2,1).故选A.【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.2、B【解析】分析:由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可.详解:由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,在Rt△QDC中,QC=,∴CP=QC-QP=,故选B.点睛:本题主要考查的是圆的相关知识和勾股定理,属于中等难度的题型.解决这个问题的关键是根据圆的知识得出点P的运动轨迹.3、A【解析】

根据有理数的加法法则进行计算即可.【详解】故选:A.【点睛】本题主要考查有理数的加法,掌握有理数的加法法则是解题的关键.4、A【解析】试题分析:根据不等式的基本性质即可得到结果.t>0,∴a+t>a,故选A.考点:本题考查的是不等式的基本性质点评:解答本题的关键是熟练掌握不等式的基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变.5、C【解析】试题分析:①∵三角形三个内角的比是1:2:3,∴设三角形的三个内角分别为x,2x,3x,∴x+2x+3x=180°,解得x=30°,∴3x=3×30°=90°,∴此三角形是直角三角形,故本小题正确;②∵三角形的一个外角与它相邻的一个内角的和是180°,∴若三角形的一个外角等于与它相邻的一个内角,则此三角形是直角三角形,故本小题正确;③∵直角三角形的三条高的交点恰好是三角形的一个顶点,∴若三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形,故本小题正确;④∵∠A=∠B=12∴设∠A=∠B=x,则∠C=2x,∴x+x+2x=180°,解得x=45°,∴2x=2×45°=90°,∴此三角形是直角三角形,故本小题正确;⑤∵三角形的一个外角等于与它不相邻的两内角之和,三角形的一个内角等于另两个内角之差,∴三角形一个内角也等于另外两个内角的和,∴这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确;⑥∵三角形的一个外角等于与它不相邻的两内角之和,又一个内角也等于另外两个内角的和,由此可知这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确.故选D.考点:1.三角形内角和定理;2.三角形的外角性质.6、C【解析】

在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.【详解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C.【点睛】本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.7、B【解析】

根据简单概率的计算公式即可得解.【详解】一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是.故选B.考点:简单概率计算.8、C【解析】解:甲和乙盒中1个小球任意摸出一球编号为1、2、3、1的概率各为,其中得到的编号相加后得到的值为{2,3,1,5,6,7,8}和为2的只有1+1;和为3的有1+2;2+1;和为1的有1+3;2+2;3+1;和为5的有1+1;2+3;3+2;1+1;和为6的有2+1;1+2;和为7的有3+1;1+3;和为8的有1+1.故p(5)最大,故选C.9、D【解析】

根据勾股定理求出四边形第四条边的长度,进而求出四边形四条边之比,根据相似多边形的性质判断即可.【详解】解:作AE⊥BC于E,则四边形AECD为矩形,∴EC=AD=1,AE=CD=3,∴BE=4,由勾股定理得,AB==5,∴四边形ABCD的四条边之比为1:3:5:5,D选项中,四条边之比为1:3:5:5,且对应角相等,故选D.【点睛】本题考查的是相似多边形的判定和性质,掌握相似多边形的对应边的比相等是解题的关键.10、A【解析】解:图B、C、D中,线段MN不与直线l垂直,故线段MN的长度不能表示点M到直线l的距离;图A中,线段MN与直线l垂直,垂足为点N,故线段MN的长度能表示点M到直线l的距离.故选A.二、填空题(本大题共6个小题,每小题3分,共18分)11、(1)x<1;(2)x≥﹣2;(1)见解析;(4)﹣2≤x<1;【解析】

(1)先移项,再合并同类项,求出不等式1的解集即可;(2)先去分母、移项,再合并同类项,求出不等式2的解集即可;(1)把两不等式的解集在数轴上表示出来即可;(4)根据数轴上不等式的解集,求出其公共部分即可.【详解】(1)解不等式①,得:x<1;(2)解不等式②,得:x≥﹣2;(1)把不等式①和②的解集在数轴上表示出来如下:(4)原不等式组的解集为:﹣2≤x<1,故答案为:x<1、x≥﹣2、﹣2≤x<1.【点睛】本题主要考查一元一次不等式组的解法及在数轴上的表示。12、1【解析】

根据判别式的意义得到△=(﹣8)2﹣4m=0,然后解关于m的方程即可.【详解】△=(﹣8)2﹣4m=0,解得m=1,故答案为:1.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.13、【解析】试题分析:连接OC,求出∠D和∠COD,求出边DC长,分别求出三角形OCD的面积和扇形COB的面积,即可求出答案.连接OC,∵AC=CD,∠ACD=120°,∴∠CAD=∠D=30°,∵DC切⊙O于C,∴OC⊥CD,∴∠OCD=90°,∴∠COD=60°,在Rt△OCD中,∠OCD=90°,∠D=30°,OC=2,∴CD=2,∴阴影部分的面积是S△OCD﹣S扇形COB=×2×2﹣=2﹣π,故答案为2﹣π.考点:1.等腰三角形性质;2.三角形的内角和定理;3.切线的性质;4.扇形的面积.14、2【解析】分析:因为BP=,AB的长不变,当PA最小时切线长PB最小,所以点P是过点A向直线l所作垂线的垂足,利用△APC≌△DOC求出AP的长即可求解.详解:如图,作AP⊥直线y=x+3,垂足为P,此时切线长PB最小,设直线与x轴,y轴分别交于D,C.∵A的坐标为(1,0),∴D(0,3),C(﹣4,0),∴OD=3,AC=5,∴DC==5,∴AC=DC,在△APC与△DOC中,∠APC=∠COD=90°,∠ACP=∠DCO,AC=DC,∴△APC≌△DOC,∴AP=OD=3,∴PB==2.故答案为2.点睛:本题考查了切线的性质,全等三角形的判定性质,勾股定理及垂线段最短,因为直角三角形中的三边长满足勾股定理,所以当其中的一边的长不变时,即可根据另一边的取值情况确定第三边的最大值或最小值.15、.【解析】

解:根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=;故答案为.【点睛】本题考查概率的计算及等腰三角形的判定,熟记等要三角形的性质及判定方法和概率的计算公式是本题的解题关键.16、.【解析】

依据点A(1,2)在x轴上的正投影为点A′,即可得到A'O=1,AA'=2,AO=,进而得出cos∠AOA′的值.【详解】如图所示,点A(1,2)在x轴上的正投影为点A′,∴A'O=1,AA'=2,∴AO=,∴cos∠AOA′=,故答案为:.【点睛】本题主要考查了平行投影以及平面直角坐标系,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.三、解答题(共8题,共72分)17、(1)k=-,b=1;(1)(0,1)和【解析】分析:(1)由直线经过点,可得.由抛物线的对称轴是直线,可得,进而得到A、B、D的坐标,然后分两种情况讨论即可;(3)设E(a,),E关于直线AB的对称点E′为(0,b),EE′与AB的交点为P.则EE′⊥AB,P为EE′的中点,列方程组,求解即可得到a的值,进而得到答案.详解:(1)由直线经过点,可得.由抛物线的对称轴是直线,可得.∵直线与x轴、y轴分别相交于点、,∴点的坐标是,点的坐标是.∵抛物线的顶点是点,∴点的坐标是.∵点是轴上一点,∴设点的坐标是.∵△BCG与△BCD相似,又由题意知,,∴△BCG与△相似有两种可能情况:①如果,那么,解得,∴点的坐标是.②如果,那么,解得,∴点的坐标是.综上所述:符合要求的点有两个,其坐标分别是和.(3)设E(a,),E关于直线AB的对称点E′为(0,b),EE′与AB的交点为P,则EE′⊥AB,P为EE′的中点,∴,整理得:,∴(a-1)(a+1)=0,解得:a=-1或a=1.当a=-1时,=;当a=1时,=;∴点的坐标是或.点睛:本题是二次函数的综合题.考查了二次函数的性质、解析式的求法以及相似三角形的性质.解答(1)问的关键是要分类讨论,解答(3)的关键是利用两直线垂直则k的乘积为-1和P是EE′的中点.18、(1)温馨提示牌和垃圾箱的单价各是50元和150元;(2)答案见解析【解析】

(1)根据“购买2个温馨提示牌和3个垃圾箱共需550元”,建立方程求解即可得出结论;(2)根据“费用不超过10000元和至少需要安放48个垃圾箱”,建立不等式即可得出结论.【详解】(1)设温情提示牌的单价为x元,则垃圾箱的单价为3x元,根据题意得,2x+3×3x=550,∴x=50,经检验,符合题意,∴3x=150元,即:温馨提示牌和垃圾箱的单价各是50元和150元;(2)设购买温情提示牌y个(y为正整数),则垃圾箱为(100﹣y)个,根据题意得,意,∴∵y为正整数,∴y为50,51,52,共3中方案;有三种方案:①温馨提示牌50个,垃圾箱50个,②温馨提示牌51个,垃圾箱49个,③温馨提示牌52个,垃圾箱48个,设总费用为w元W=50y+150(100﹣y)=﹣100y+15000,∵k=-100,∴w随y的增大而减小∴当y=52时,所需资金最少,最少是9800元.【点睛】此题主要考查了一元一次不等式组,一元一次方程的应用,正确找出相等关系是解本题的关键.19、见解析【解析】

证明:∵D、E是AB、AC的中点∴DE=BC,EC=AC∵D、F是AB、BC的中点∴DF=AC,FC=BC∴DE=FC=BC,EC=DF=AC∵AC=BC∴DE=EC=FC=DF∴四边形DECF是菱形20、(1)25.6元;(2)收盘最高价为27元/股,收盘最低价为24.7元/股;(3)-51元,亏损51元.【解析】试题分析:(1)根据有理数的加减法的运算方法,求出星期二收盘时,该股票每股多少元即可.(2)这一周内该股票星期一的收盘价最高,星期四的收盘价最低.(3)用本周五以收盘价将全部股票卖出后得到的钱数减去买入股票与卖出股票均需支付的交易费,判断出他的收益情况如何即可.试题解析:(1)星期二收盘价为25+2−1.4=25.6(元/股)答:该股票每股25.6元.(2)收盘最高价为25+2=27(元/股)收盘最低价为25+2−1.45+0.9−1.8=24.7(元/股)答:收盘最高价为27元/股,收盘最低价为24.7元/股.(3)(25.2-25)×1000-5‰×1000×(25.2+25)=200-251=-51(元)答:小王的本次收益为-51元.21、(1)y=﹣(x+1)1;(1)点B(1,﹣1)不在这个函数的图象上;(3)抛物线向左平移1个单位或平移5个单位函数,即可过点B;【解析】

(1)根据待定系数法即可得出二次函数的解析式;(1)代入B(1,-1)即可判断;(3)根据题意设平移后的解析式为y=-(x+1+m)1,代入B的坐标,求得m的植即可.【详解】解:(1)∵二次函数y=a(x+m)1的顶点坐标为(﹣1,0),∴m=1,∴二次函数y=a(x+1)1,把点A(﹣1,﹣)代入得a=﹣,则抛物线的解析式为:y=﹣(x+1)1.(1)把x=1代入y=﹣(x+1)1得y=﹣≠﹣1,所以,点B(1,﹣1)不在这个函数的图象上;(3)根据题意设平移后的解析式为y=﹣(x+1+m)1,把B(1,﹣1)代入得﹣1=﹣(1+1+m)1,解得m=﹣1或﹣5,所以抛物线向左平移1个单位或平移5个单位函数,即可过点B.【点睛】本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,二次函数的性质以及图象与几何变换.22、(1)直线的表达式为,双曲线的表达式为;(2)①;②当时,的大小不发生变化,的值为;③t的值为或.【解析】

(1)由点利用待定系数法可求出直线的表达式;再由直线的表达式求出点B的坐标,然后利用待定系数法即可求出双曲线的表达式;(2)①先求出点C的横坐标,再将其代入双曲线的表达式求出点C的纵坐标,从而即可得出t的值;②如图1(见解析),设直线AB交y轴于M,则,取CD的中点K,连接AK、BK.利用直角三角形的性质证明A、D、B、C四点共圆,再根据圆周角定理可得,从而得出,即可解决问题;③如图2(见解析),过点B作于M,先求出点D与点M重合的临界位置时t的值,据此分和两种情况讨论:根据三点坐标求出的长,再利用三角形相似的判定定理与性质求出DM的长,最后在中,利用勾股定理即可得出答案.【详解】(1)∵直线经过点和∴将点代入得解得故直线的表达式为将点代入直线的表达式得解得∵双曲线经过点,解得故双曲线的表达式为;(2)①轴,点A的坐标为∴点C的横坐标为12将其代入双曲线的表达式得∴C的纵坐标为,即由题意得,解得故当点C在双曲线上时,t的值为;②当时,的大小不发生变化,求解过程如下:若点D与点A重合由题意知,点C坐标为由两点距离公式得:由勾股定理得,即解得因此,在范围内,点D与点A不重合,且在点A左侧如图1,设直线AB交y轴于M,取CD的中点K,连接AK、BK由(1)知,直线AB的表达式为令得,则,即点K为CD的中点,(直角三角形中,斜边上的中线等于斜边的一半)同理可得:A、D、B、C四点共圆,点K为圆心(圆周角定理);③过点B作于M由题意和②可知,点D在点A左侧,与点M重合是一个临界位置此时,四边形ACBD是矩形,则,即因此,分以下2种情况讨论:如图2,当时,过点C作于N又,即由勾股定理得即解得或(不符题设,舍去)当时,同理可得:解得或(不符题设,舍去)综上所述,t的值为或.【点睛】本题考查反比例函数综合题、锐角三角函数、相似三角形的判定和性质、四点共圆、勾股定理等知识点,解题的关键是学会添加

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论