生物工程下游技术及生物工程专业论文_第1页
生物工程下游技术及生物工程专业论文_第2页
生物工程下游技术及生物工程专业论文_第3页
生物工程下游技术及生物工程专业论文_第4页
生物工程下游技术及生物工程专业论文_第5页
已阅读5页,还剩45页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGE49生物工程下游技术生物工程下游技术的定义指从动植物与微生物的有机体或器官、生物工程产物(发酵液、培养液)及其生物化学产品中提取、分离、纯化有用物质的技术过程。

实质:是研究如何从混合物中把一种或几种物质分离出来的科学技术。1.生化工程分离技术预处理结晶干燥离心法:离心过滤、离心沉降、超离心萃取法:有机溶剂、双水相、液膜、反胶团、超临界层析法:凝胶过滤层析、反相层析、亲和、疏水相互作用、聚焦、离子交换膜分离:微滤、超滤、反渗透、透析、电渗透2.生物物质常用的分离技术氨基酸:结晶和离子交换法蛋白质和多肽:离子交换层析、电泳糖类:吸附层析脂质:有机溶剂萃取、超临界流体萃取和层析抗生素:有机溶剂萃取、离子交换、结晶和吸附层析3.生物分离方法的选择与评价原则:步聚少,次序合理,产品规格(注射,非注射),生产规模,物料组成,产品形式,产品稳定性,危害性,物性:溶解度、电荷、分子大小、功能团、稳定性、挥发性,废水处理4.浓缩率:浓缩程度一般用浓缩率(concentrationfactor)表达,是一个以浓缩为目的的分离过程的最重要指标。浓缩率为m,mt=mx则目标产物未得到任何程度的分离纯化。5.分离因子:分离因子又称分离系数。产品中目标产物浓度越高,杂质浓度越低,则分离因子越大,分离效率越高。6.回收率:无论是以浓缩还是以分离为目的操作过程,目标产物均应以较大的比例回收,回收率R:生物分离操作多为间歇过程(分批操作),若原料液和产品溶液的体积分别为VC和VP。1生物产品与普通化工产品分离过程有何不同?2设计生物产品的分离工艺应考虑哪些因素?3分离纯化的回收率与浓缩率如何计算?4现代生物分离工程研究方向有哪些特点?5分离纯化指标有哪些?简述pH对发酵液过滤特性的影响,并举例说明。答:(1)pH直接影响发酵液中某些物质的电离程度和电荷性质,因此适当调节pH值可以改善发酵液的过滤特性。(2)氨基酸和蛋白质在酸性条件下带正电,碱性条件下带负电,等电点时净电荷为零,两性物质在等电点下的溶解度最小,等电点沉淀法在生物工业分离中广泛使用。(3)如味精生产,利用等电点沉淀法提取谷氨酸,一般蛋白质也在酸性范围达到等电点;膜分离中可通过调整pH值改变易吸附分子的电荷性质,减少膜堵塞和膜污染;此外,细胞、细胞碎片及某些胶体物质等在特定pH下也可能趋于絮凝而成为较大颗粒,有利于过滤进行。第二章1.预处理的目的:促进从悬浮液中分离固形物的速度,提高固液分离的效率:⑴改变发酵液的物理性质,包括增大悬浮液中固体粒子的尺寸,降低液体黏度。⑵相对纯化,去除发酵液中的部分杂质(高价无机离子和杂蛋白质),以利于后续各步操作。⑶尽可能使产物转入便于后处理的一相中(多数是液相);2.预处理的方法凝聚和絮凝加热法调节悬浮液的pH值杂蛋白的去处高价无机离子的去处助滤剂反应剂3凝聚与絮凝:.凝聚与絮凝处理过程就是将化学药剂预先投加到悬浮液中,改变细胞、菌体和蛋白质等胶体粒子的分散状态,破坏其稳定性,使其聚集起来,增大体积以便固液分离。凝聚和絮凝技术常用于菌体细小而且黏度大的发酵液的预处理中。凝聚和絮凝是两种方法,两个概念。凝聚:指在投加的化学物质(铝、铁的盐类)作用下,胶体脱稳并使粒子相互聚集成1mm大小块状凝聚体的过程。机理:

1)中和粒子表面电荷

2)消除双电层结构3)破坏水化膜胶体双电层结构发酵液中菌体表面带有负电荷,由于静电引力使溶液中反离子被吸附在其周围,在界面上形成了双电层。正离子同时受到使它们均匀分布的热运动影响,具有离开胶粒表面的趋势。两种相反作用力下,双电层分裂成两部:1)吸附层或stern层;2)扩散层。扩散双电层的结构模型(Gouy-Chapman-Sternmodel)。两种相反作用力下,双电层分裂成两部:1)吸附层或stern层;2)扩散层。扩散双电层的结构模型(Gouy-Chapman-Sternmodel)。絮凝:指使用絮凝剂(天然的和合成的大分子量聚电解质)将胶体粒子交联成网,形成10mm大小絮凝团的过程。其中絮凝剂主要起架桥作用。机理:架桥作用采用絮凝法可形成粗大的絮凝体,使发酵液较易分离。人工合成有机高分子聚合物、天然有机高分子聚合物、无机高分子聚合物聚丙烯酰胺类絮凝剂的优点用量少,一般以mg/L计量;絮凝体粗大,分离效果好;絮凝速度快;种类多,适用范围广。聚丙烯酰胺类絮凝剂的缺点:存在一定的毒性,特别是阳离子型聚丙烯酰胺,用于食品和医药工业时应谨慎。天然有机高分子絮凝剂具有无毒,易生物降解,原料来源广等优点。天然有机高分子改性絮凝剂根据其原料来源不同可分为淀粉类、纤维素类、植物胶类和聚多糖类。其中淀粉改性絮凝剂的研究开发最引人注目。微生物絮凝剂是近年来研究和开发的新型絮凝剂,由微生物或其分泌物产生的具有絮凝细胞功能的代谢产物。主要成分是糖蛋白、粘多糖、纤维素及核酸等高分子物质。微生物絮凝剂和天然絮凝剂最大的优点是安全,无毒和不污染环境。4.助滤剂:一种不可压缩的多孔微粒,菌体可吸附于助滤剂微粒上,降低了滤饼的可压缩性,减小了过滤阻力。常用的助滤剂是硅藻土,其次是珍珠岩粉、活性炭、石英砂、石棉粉、纤维素等。(1)粒度根据悬浮液中的颗粒和滤液的澄清度确定,一般颗粒较小的滤饼应采用细小的助滤剂。(2)助滤剂的品种根据过滤介质选择助滤剂品种。使用粗目滤网时易泄漏,可选择石棉粉、纤维素;采用细目滤布时,可使用细硅藻土;(3)用量间歇操作时,过滤介质表面预涂助滤剂,其厚度应不小于2mm。连续过滤机中根据过滤速度确定。使用硅藻土时,通常细粒为500g/m3,中等粒度700g/m3,粗粒700-1000g/m3。5.反应剂:加入某些不影响目标产物的反应剂,可消除发酵液中的一些杂质对过滤的影响,从而提高过滤速度。1)反应剂与某些可溶性盐类发生反应生成不溶性沉淀,生成的沉淀能防止菌丝体粘结,使菌丝具有块状结构,又能使蛋白质凝固,过滤性能上升,沉淀本身可作为助滤剂.如新生霉素发酵液中加入CaCl2和Na3PO4,生成Ca3(PO4)2沉淀。2)发酵液中含有不溶性多糖物质时,用酶将其转化为单糖,以提高过滤速率。如万古霉素用淀粉作培养基,发酵液过滤前加入0.025%的淀粉酶,搅拌30min后,再加2.5%硅藻土助滤剂,可提高过滤效率5倍。6.杂蛋白的去除方法沉淀法A等电点沉淀法(isoelectricprecipitation)蛋白质的等电点大都在酸性范围内(pH4.0~5.5),调节发酵液的pH到蛋白质的等电点是除去蛋白质的有效方法。B.酸碱调节,使蛋白质与离子形成沉淀在酸性溶液中,蛋白质与一些阴离子形成沉淀,如三氯乙酸盐、水杨酸盐、苦味酸盐等;在碱性溶液中,蛋白质与一些阳离子形成沉淀,如Ag+、Cu2+、Zn2+、Fe3+等。变性蛋白质从有规则的排列变成不规则结构的过程称为变性。变性蛋白质溶解度较小。加热,大幅度调节pH值,加酒精、丙酮等有机溶剂或表面活性剂等。不足之处:加热法只适合于对热较稳定的目的产物;极端pH值也会导致某些目的产物失活,且要消耗大量酸碱;有机溶剂法通常只适用于所处理的液体数量较少的场合。1.沉淀法主要包括盐析法,有机溶剂沉淀法,等电点沉淀法,结晶法等等。2.按照一般的习惯,析出物为晶体时称为结晶,析出物为无定形固体则称为沉淀。3.影响盐析的因素有:无机盐的种类、溶质(蛋白质等)种类的影响、蛋白质浓度的影响、温度的影响、pH的影响。吸附法加入某些吸附剂或沉淀剂吸附杂蛋白质而除去。四环类抗生素生产中,采用黄血盐和硫酸锌的协同作用生成亚铁氰化锌钾K2Zn3[Fe(CN)5]2的胶状沉淀来吸附蛋白质,利用此法除蛋白质已取得很好的效果。在枯草杆菌发酵液中,常加入氯化钙和磷酸氢二钠,这两者本身生成庞大的凝胶,把蛋白质、菌体及其它不溶性粒子吸附并包裹在其中而除去,从而加快了过滤速度。1发酵液为何需要预处理?处理方法有哪些?其简要机理如何?2凝集与絮凝过程有何区别?如何将两者结合使用?3除去发酵液中杂蛋白常用方法有哪些?4简述胶体双电层结构及稳定性机理?5什么是助滤剂和反应剂?能列举1-3个应用的例子

1.盐析法:是利用各种生物分子在浓盐溶液中溶解度的差异,通过向溶液中引入一定数量的中性盐,使目的物或杂蛋白以沉淀析出,达到纯化目的的方法。2.Ks盐析:在一定的pH和温度下改变离子强度(盐浓度)进行盐析,称作Ks盐析法。Ks盐析法多用于提取液的前期分离工作。3.β盐析:在一定离子强度下仅改变pH和温度进行盐析,称作β盐析法。在分离的后期阶段,为了求得较好的分辨率,或者为了达到结晶的目的,有时应用β盐析法。β盐析法由于溶质溶解度变化缓慢且变化幅度小,沉淀分辨率比KS盐析法好。4.亲和沉淀:利用亲和反应原理,将配基与可溶性的载体偶联后形成载体-配基复合物(亲和沉淀剂),该复合物可选择性地与蛋白质结合,在一定条件下沉淀出来。四问答1.什么是盐析作用?盐析的原理是什么?答:盐析作用:向蛋白质溶液中逐渐加入中性盐,在高盐浓度时,蛋白质溶解度随之减小,发生了盐析作用。产生盐析作用的一个原因是由于盐离子与蛋白质表面具相反电性的离子基团结合,形成离子对,因此盐离子部分中和了蛋白质的电性,使蛋白质分子之间电排斥作用减弱而能相互靠拢,聚集起来。盐析作用的另一个原因是由于中性盐的亲水性比蛋白质大,盐离子在水中发生水化而使蛋白质脱去了水化膜,暴露出疏水区域,由于疏水区域的相互作用,使其沉淀。2.如何选择盐析所用中性盐?(1)盐析作用要强。一般来说多价阴离子的盐析作用强,有时多价阳离子反而使盐析作用降低。(2)盐析用盐要有足够大的溶解度,且溶解度受温度影响应尽可能小。这样便于获得高浓度盐溶液,有利于操作,尤其是在较低温度下的操作,不致造成盐结晶析出,影响盐析效果。(3)盐析用盐在生物学上是惰性的,不致影响蛋白质等生物分子的活性,最好不引入给分离或测定带来麻烦的杂质。(4)来源丰富、经济。3.有机溶剂沉淀的原理是什么?答:亲水性有机溶剂加入溶液后降低了介质的介电常数,使溶质分子之间的静电引力增加,聚集形成沉淀;水溶性有机溶剂本身的水合作用降低了自由水的浓度,压缩了亲水溶质分子表面原有水化层的厚度,降低了它的亲水性,导致脱水凝集。4.有机溶剂沉淀影响沉淀效果的因素有那些?答:(1)有机溶剂种类及用量(2)pH的影响(3)温度无机盐的含量(4)某些金属离子的助沉淀作用(5)样品浓度第三章影响发酵液固液分离的因素1)发酵液中悬浮离子的大小2)发酵液的黏度viscosity:固液分离速度通常与粘度成反比,粘度越大,固液分离越困难。影响粘度的因素:菌体的种类和浓度(重要因素)培养液中蛋白质、核酸大量存在培养基成分此外,某些染菌发酵液,如染细菌,则粘度会增大。发酵过程的不正常处理,如大量过剩的培养基和消沫油加入,都会使粘度增大。2.常见的固液分离方法过滤filtration过滤操作是借助于过滤介质,在一定的压力差ΔP作用下,使悬浮液中的液体通过介质的孔道,而固体颗粒被截留在介质上,从而实现固液分离的单元操作。离心Centrifugation离心分离是基于固体颗粒和周围液体密度存在差异,在离心场中使不同密度的固体颗粒加速沉降的分离过程。扩张床吸附EBA(ExpandedBedAdsorption)一种新型的生物分离技术:集成化分离技术,即对已有的两种或两种以上的单元操作进行有效的组合,组成一种有效的单元操作,以达到提高产品收率、缩短纯化步骤、降低纯化费用和投资成本的目的2.固液分离过滤设备按操作方式分类:间歇过滤机、连续过滤机按操作压强差分类:压滤、吸滤和离心过滤典型过滤设备:实验室用抽滤装置板框压滤机(间歇操作)板框压滤机的过滤推动力来自泵产生的液压或进料贮槽中的气压。转筒真空过滤机(连续操作)真空过滤设备以大气与真空之间的压力差作为过滤操作的推动力。生物工业中,用得较多的是转筒式真空过滤机和带式真空过滤机。过滤式离心机:由于离心力作用,液体产生径向压差,通过滤饼、滤网及滤筐而流出。离心分离设备优缺点优点:分离速度快,分离效率高、液相澄清度好;缺点:与过滤设备相比,设备投资高、能耗大、离心产生的固体浓缩物和过滤产生的浓缩不同。通常离心只能得到一种较为浓缩的悬浮液或浆体。而过滤可获得的水分含量较低的滤饼。3.离心的几种原理类型(一)差速离心特点:介质密度均一;速度由低向高,逐级离心。用途:分离大小相差悬殊的细胞和细胞器。沉降顺序:核——线粒体——溶酶体与过氧化物酶体——内质网与高基体——核蛋白体。可将细胞器初步分离,常需进一步通过密度梯离心再行分离纯化。(二)密度梯度离心用介质在离心管内形成一连续或不连续的密度梯度,将细胞混悬液或匀浆置于介质的顶部,通过离心力场的作用使细胞和细胞成分分层、分离。类型:速度沉降、等密度沉降。常用介质:氯化铯、蔗糖、多聚蔗糖。分离活细胞的介质要求:1)能产生密度梯度,且密度高时,粘度不高;2)pH中性或易调为中性;3)浓度大时渗透压不大;4)对细胞无毒。4.膨胀床吸附原理和固相分级特性膨胀床与传统固定床的区别在于:膨胀床的床层上部安装有调节器,当料液或清洗液从床底输入时,吸附剂床层产生膨胀,高度调节器上升,膨胀床状态下床层高度一般为固定床状态的2-3倍,可直接处理菌体发酵液或细胞匀浆液,提高目标产物收率。膨胀床与流化床的区别:后者的吸附型粒子和液体在床层内混合程度高,吸附效率低,而前者的吸附剂粒子基本悬浮于固定的位置,液体的流动与固定床相似,接近平推流,吸附效率高。第四章细胞破碎的目的:破坏细胞外围,使细胞内容物释放出来。意义:破碎细胞,提取其中的各种物质,分析细胞的结构,遗传物质的研究,对人类的发展具有重要的意义。包含体可用密度梯度离心机收集,收集的包含体用变性剂溶解,再除去变性剂即可得到恢复活性的蛋白质产品。1.非机械破碎方法有酶溶破碎法\化学破碎法\去垢剂破碎法\渗透压冲击破碎法\冻融破碎法。2.破碎率的测定:直接测定法\目的产物测定法\导电率测定法3.基因工程包涵体的纯化过程为____洗涤____、_____溶解___和___复性____;目标蛋白的变性溶解通常使用的变性剂是___盐酸胍__和___尿素__;目标蛋白复性的方法通常有__稀释法___、__膜分离法___和__层析法_。4.气流干燥主要适用于酵母菌,一般在25-30℃的气流中吹干;真空干燥多用于细菌,冷冻干燥适用于不稳定的生化物质5.细胞破碎常用的表面活性剂:十二烷基硫酸钠(SDS,阴离子型);。非离子型如TritonX-100和吐温(Tween)等对疏水性物质具有很强的亲和力,能结合并溶解磷脂,破坏内膜的磷脂双分子层,使某些胞内物质释放出来第五章1.萃取(Extraction)指任意两相之间的传质过程。在液液萃取过程中常用有机溶剂作为萃取试剂,因而常常称液液萃取为溶剂萃取。溶剂萃取法是生物工业中一种重要的分离提取方法。它是利用一种溶质组分(如产物)在两个互不相溶的液相(如水相和有用机溶剂相)中竞争性溶解和分配性质上的差异来进行分离操作的。有机溶剂萃取法广泛应用于抗生素、有机酸、维生素、激素等发酵产物工业规模的提取上。2.溶剂萃取法有以下一些优点:比化学沉淀法分离程度高;比离子交换法选择性好、传质快;比蒸馏法能耗低。另外它还有生产能力大、周期短、便于连续操作、容易实现自动化控制等优点。2.一个良好的溶剂要满足以下几方面的要求:①有很大的萃取容量,即单位体积的萃取溶剂能萃取大量的产物;②有良好的选择性,理想情况是只萃取产物而不萃取杂质;③与被萃取的液相(通常是水相)互溶度要小,且粘度低、界面张力小或适中;④溶剂的回收和再生容易;⑤化学稳定性好,不易分解,对设备腐蚀性小;⑥经济性好,价廉易得;⑦安全性好,闪点高,对人体无毒性或毒性低。生物工业上常用的溶剂有酯类、醇类和酮类等.3、单级萃取单级萃取是使用一个混合器和一个分离器的萃取操作。料液F与萃取溶剂S一起加入混合器内搅拌混合萃取,达到平衡后的溶液送到分离器内分离得到萃取相L和萃余相R,萃取相送至回收器,萃余相R为废液。在回收器内产物P与溶剂分离(如蒸馏、反萃取等),溶剂S则可循环使用。目的物在两相中的数量比:E=K·VS/VF=K/m其中m为浓缩比,即:m=VF/VS令未被萃取的分率为φ,则:φ=1/(E+1)而理论收(得)率:1-φ=E/(E+1)4、多级萃取1)多级错流萃取多级错流萃取流程的特点是:每级均加新鲜溶剂,故溶剂消耗量大,得到的萃取液产物平均浓度较稀,但萃取较完全。多级错流萃取流程收率1-φ=1-1/(E1+1)(E2+1)…(En+1)2)多级逆流萃取多级逆流萃取流程的特点是:料液走向和萃取剂走向相反,只在最后一级中加入萃取剂,故和错流萃取相比,萃取剂消耗少,萃取液产物平均浓度高,产物收率最高。多级逆流萃取流程收率1-φ=(En+1-E)/(En+1-1)5.乳化和去乳化乳化:是一种液体(分散相)分散在另一种不相混溶的液体(连续相)中的现象。乳化发生后,两相分层困难,出现夹带现象,影响收率和分离效果。乳化的结果可能形成两种形式的乳浊液。一种是水包油型(O/W),另一种为油包水型(W/O)。由蛋白质引起的乳化,构成形式为O/W型,液滴粒径再.5~30微米。形成稳定的乳浊液,一般应有第三种物质即表面活性剂的存在。乳浊液的稳定性与下列因素有关:①界面上保护膜是否形成;②液滴是否带电;③介质的粘度。其中①最重要。在发酵液中,蛋白质是引起乳化的最重要的表面活性物质。表面活性剂亲水性强,乳化时易形成水包油。表面活性剂疏水性强,乳化时易形成油包水。6、破乳化破乳方法:1)过滤或离心分离破乳法,2)化学法(加电解质中和离子型乳浊液的电荷)3)物理法(加热、稀释、吸附等)4)顶替法(加入表面活性更大,但因其C链较短难以形成坚固的保护膜的物质,取代界面上的乳化剂,如戊醇)5)转型法(如在O/W中加入亲油性乳化剂,使乳化液有生成W/O的倾向,但又不稳定,从而达到破乳目的)7.浸取:用某种溶剂把有用物质从固体原料中提取到溶液中的过程称为浸取,也称之为浸出。溶剂从固体颗粒中浸取可溶性物质的过程一般包括以下一些步骤:1)溶剂从溶剂主体传递到固体颗粒的表面;2)溶剂扩散渗入固体内部和内部微孔隙内;3)溶质溶解进入溶剂;4)通过固体微孔隙通道中的溶液扩散至固体表面并进一步进入溶剂主体。其中,第3和4步是浸取过程总速率的控制性步骤。溶质从固体内部向溶剂主体的传递受各种因素的影响。包括几个方面:1)通常情况,为普通的扩散传递。2)对于生物大分子,传递通道的空间尺度影响较大。3)溶液中的凝胶物质形成的框架结构会影响分子的扩散。4)在固体内部的分子扩散包含两种不同的机理(溶解扩散和多孔内扩散)。8、分配定律和分配系数从料液中提取出来的物质称为溶质;用来萃取产物的溶剂常称为萃取剂;溶质转移到萃取剂中与萃取剂形成的溶液称为萃取液;被萃取出溶质后的料液称萃余液。在一定温度一定压力的条件下,溶质分配在两个互不相溶的溶剂中,达到平衡时溶质在两相中的活度之比为一常数,这个现象即为分配定律,比例常数为分配系数。分配定律成立的条件:1)稀溶液2)溶质对溶剂互溶性没有影响3)必须是同一分子类型不同溶质在不同溶剂中有不同的K值。K值越大,表示该溶质在上层液相中溶解度愈大,K值越小,表示该溶质在下层液相中溶解度愈大。9.分离因数含有两个及两个以上的溶质时,萃取剂对溶质A和B分离能力的大小可用分离因数(β)来表征:

β=(C1A/C1B)/(C2A/C2B)=(C1A/C2A)/(C1B/C2B)

=KA/KB

式中:C代表浓度,下标1、2代表萃取相和萃余相,A、B为溶质。如果A是产物,B为杂质,分离因数可写为:β=K产/K杂β越大,A、B的分离效果越好,即产物与杂质越容易分离。弱电解质表观分配系数(1)pH值如果溶质是弱酸,表观分配系数为K=K0[H+]/(Kp+[H+]),如果是弱碱,则K=K0Kp/(Kp+[H+])。可见pH直接影响表观分配系数。pH除影响K外,还可能对选择性有影响。pH值还应尽量选择在使产物稳定的范围内。(2)温度温度会影响生化物质的稳定性,所以一般在室温或低温下进行。温度会影响分配系数K,因为温度通过影响溶质的化学位而影响溶质在两相中的分配。(3)盐析无机盐类可降低产物在水中的溶解度而使其更易于转入有机溶剂相中。无机盐类还能减小有机溶剂在水相中的溶解度。盐析剂用量要适宜,用量过多也有可能促使杂质一起转入溶剂相,同时还要考虑其经济性,必要时要回收。(4)带溶剂带溶剂是指这样一种物质,它们能和产物形成复合物,使产物更易溶于有机溶剂相中,提高分配系数K,该复合物在一定条件下又要容易分解。第七章1.双水相系统双水相系统就是当两种聚合物或一种聚合物与一种盐溶于水中而形成溶液时,由于聚合物溶液间或聚合物与无机盐溶液间具有不相容性,致使当聚合物和无机盐的浓度达到一定值以上时,就会分成互不相溶的两相系统,由于其共同溶剂是水,就称此系统为双水相系统。常见的用于生物物质分离的聚合物/聚合物系统有聚乙二醇(PEG)/葡聚糖,聚合物/无机盐系统有PEG/磷酸盐,PEG/硫酸铵等。相对于葡聚糖来说,无机盐价格便宜,所以聚合物/无机盐系统在工业应用上具有更为广阔的前景。2.要成功地运用双水相萃取方法,应满足下列条件:1)欲提取的酶和细胞碎片应分配在不同的相中;2)酶的分配系数应足够大,使在一定的相体积比时,经过一次萃取,就能得到较高的收率;3)两相用离心机很容易分离。相图水溶性两相的形成条件和定量关系常用相图来表示。图1所示是由两种聚合物和水组成的体系(如PEG/Dextran体系,这两种聚合物都能与水无限混合),以聚合物PEG的浓度(重量%)为纵坐标,以聚合物Dextran的浓度(重量%)为横坐标所作相图。只有在这两种聚合物达到一定浓度时才会形成两相。图中曲线TCB把均匀区域和两相区域分隔开来,称作双节线。处于双节线下面的区域时是均匀的,当它们的组成位于上面的区域时,体系才会分成两相。例如,点M代表整个系统的组成,轻相(或上相)组成用T点表示,重相(或下相)组成用B点表示。T、M、B三点在一条直线上,其连接的直线称系线。第九章膜分离:利用膜的选择性(孔径大小),以膜的两侧存在的能量差作为推动力,由于溶液中各组分透过膜的迁移率不同而实现分离的一种技术。浓差极化:是指但溶剂透过膜,而溶质留在膜上,因而使膜面浓度增大,并高于主体中浓度。1.膜分离过程中所使用的膜,依据其膜(孔径)不同可分为(微滤膜),(超滤膜),(纳滤膜)和(反渗透膜)。2.工业上常用的膜装置有(板式),(管式),(螺旋卷式)和(中空纤维式)。3.根据膜结构的不同,常用的膜可分为(对称性膜)、(非对称膜)和(复合膜)三类4.膜的污染主要有两种情况,一种是化学污染;另一种是物理污染。1.区分渗透与反渗透?举例说明反渗透的应用。答:渗透是由于存在化学势存在梯度而引起的自发扩散现象。因此,通常情况下,其结果是水从纯水一侧透过半透膜向溶液侧渗透,使后者的液位抬高。如果在溶液一侧施加压力,外界力做功使溶液中水的化学势升高,则纯水通过膜的渗透就会逐渐减小,并最终停止(条件?),此时的压力差就是溶液的渗透压。当时,水将从溶液一侧向纯水一侧移动,此种渗透称之为反渗透。2.膜分离过程中,有那些原因会造成膜污染,如何处理?答:(1)膜污染主要有两种情况:一是附着层被滤饼、有机物凝胶、无机物水垢胶体物质或微生物等吸附于表面;另一种是料液中溶质结晶或沉淀造成堵塞。(3分)(2)膜污染是可以预防或减轻的,措施包括料液预处理、膜性质的改善、操作条件改变等方式。(2分)(3)膜污染所引起的通量衰减往往是不可逆的,只能通过清洗的处理方式消除,包括物理方法冲洗和化学药品溶液清洗等。(2分)1.膜分离技术的类型和定义?答:膜分离过程的实质是物质透过或被截留于膜的过程,近似于筛分过程,依据滤膜孔径大小而达到物质分离的目的,故而可以按分离粒子大小进行分类:(1)微滤:以多孔细小薄膜为过滤介质,压力为推动力,使不溶性物质得以分离的操作,孔径分布范围在0.025~14μm之间;(2)超滤:分离介质同上,但孔径更小,为0.001~0.02μm,分离推动力仍为压力差,适合于分离酶、蛋白质等生物大分子物质;(3)反渗透:是一种以压力差为推动力,从溶液中分离出溶剂的膜分离操作,孔径范围在0.0001~0.001μm之间;(由于分离的溶剂分子往往很小,不能忽略渗透压的作用,故而成为反渗透);(4)纳滤:以压力差为推动力,从溶液中分离300~1000小分子量的膜分离过程,孔径分布在平均2nm;十二章1.亲和层析的原理利用生物分子对之间所具有的专一而又可逆的亲和力使生物分子分离纯化的技术。载体-间隔臂-配基-配体特点亲和层析的分辨率高。亲和层析法操作步骤少,操作条件温和,生物大分子的活力不易丧失,回收率也高。适合于含量少又不稳定的生物活性物质的分离与纯化。要分离一种物质必须找到适宜的配基,并将其制成固相载体之后方可进行。2.影响亲和作用的因素:离子强度pH值抑制氢键形成的物质温度金属螯合剂等在亲和层析中,作为固定相的一方称为配基。配基必须偶联于载体或担体上,一般采用琼脂糖凝胶、葡聚糖凝胶等。3.理想的载体应满足下面的要求:1.极低的非特异吸附性;2.高度的亲水性;3.较好的理化稳定性;4.大量的化学基团能被有效地活化,而且容易和配基结合;5.适当的多孔性(即孔径大小和孔多少),最好为粒径均一的球形粒子。4.优良的配基须具备两个条件:1)与纯化的物质有较强亲和力2)具有与载体共价结合的基团该基团和载体结合后,对配基与配体的亲和力没有影响或影响不明显。5.手臂:如果在配基与载体之间连接手臂,可以增大配基与载体之间的距离,使其与生物大分子发生有效的亲和结合。常用的手臂化合物:乙二胺NH2-CH2-CH2-NH2已二胺NH2-CH2-CH2-CH2-CH2-NH26-氨基已酸NH2-CH2-CH2-CH2-CH2-COOH,环氧氯丙烷1,4-丁二醇缩水甘油醚6.提高亲和吸附剂的操作容量的方法手臂增加配基浓度7.亲和色谱中为何要引入手臂当配基分子量较小时,将其直接固定在载体上,会由于载体的空间位阻,配基与生物大分子不能发生有效的亲和作用。如果在配基与载体之间连接手臂,可以增大配基与载体之间的距离,使其与生物大分子发生有效的亲和结合。加入手臂的长度要恰当,太短则效果不明显;太长则容易由疏水性非特异吸附造成弯曲,反而降低吸附效率。手臂的疏水性也需要考虑,应尽量减小对配基的影响。如手臂和配基疏水性都较强,则效果不明显。8.凝胶层析凝胶层析是按照被分离物质分子大小,经过具有一定孔径的多孔物质进行分离的一种方法。其又称为凝胶过滤或分子筛过滤或排阻层析。洗脱体积(Ve):即欲分离物质通过层析柱洗脱下来所需洗脱液的总体积。1.过饱和溶液的形成方式有:(饱和溶液冷却),(部分溶剂蒸发),(化学反应结晶法)和(解析法)。2.在结晶操作中,工业上常用的起晶方法有(自然起晶法),(刺激起晶法)和(晶种起晶法)。3.晶体质量主要指(晶体大小),(晶体性状)和(晶体纯度)三个方面;4.结晶包括三个过程:形成过饱和溶液、晶核形成和晶体生长。5.工业生产中通常采用加入晶种,并将溶质浓度控制在养晶区,以利于大而整齐的晶体形成。结晶过程应尽量控制在介稳区内进行,以得到平均粒度较大的结晶产品,避免产生过多晶核而影响最终产品的粒度。6.喷雾干燥法制备微胶囊。软水无盐水制备P244-246编号:2012002河南大学2012届本科毕业论文蜡样芽孢杆菌突变体关于分泌淀粉酶的研究论文作者姓名:作者学号:所在学院:生命科学学院所学专业:生物工程导师姓名职称:论文完成时间:2012年5月11日 2012年5月11日蜡样芽孢杆菌突变体关于分泌淀粉酶的研究摘要:实验通过卢戈氏碘液染色法和观察透明圈的方法,以蜡样芽孢杆菌0-9菌株为对照,对0-9菌株通过转座形成的突变体产生胞外淀粉酶能力的差异进行研究。实验结果发现,在固体淀粉培养基、30℃、24h培养的条件下,突变体36、38号菌产生淀粉酶的能力远大于对照组,突变体56、94号菌产生淀粉酶的能力远小于对照组。这些突变体可进一步为探索菌体胞外淀粉酶的分泌能力和菌体在小麦中的定植能力之间的关系做好准备,对小麦病虫害的防治也具有一定的意义。关键词:卢戈氏碘液染色法转座蜡样芽胞杆菌0-91前言1.1生物防治1.1.1生物防治的概念生物防治包括以虫治虫和以菌治虫。其主要措施是保护和利用自然界害虫的天敌、繁殖优势天敌、发展性激素防治虫害等。是人类依靠科技进步同病虫草害做斗争的重要措施之一。以菌治虫是80年代新兴的生物防治技术。它是利用昆虫的病原微生物杀死害虫。这类微生物包括细菌、真菌、病毒、原生物等,对人畜均无影响,使用的时候比较安全,无残留毒性,害虫对细菌也无法产生抗药性,因此,微生物农药的杀虫效果在所有防治技术中名列前茅。1.1.2生物防治的意义长期以来,主要通过化学农药来防治植物病害,虽然这种方法能够较快地防治疾病,但是也引起了植物病原抗药性、农药残留等问题,造成了严重的环境污染和生态破坏。植物内生细菌几乎存在于所有健康植物体内,与植物和谐共处,不仅能够避免使用化学农药给人类健康和环境带来的隐患,还能避免使用杀菌剂在杀死病原菌的同时杀死在环境中起重要作用的非靶微生物和使用其他生物菌肥破坏植物根际土壤的微生态平衡,因此有效生防菌的筛选在植物病害防治上有很大的应用潜力。当前制约生防菌利用的关键因素是抑菌活性不够强,生防菌在自然环境中定殖能力差,形不成优势生态菌群来阻止病原菌的侵染。1.2腊状芽孢在生物防治中的作用蜡样芽孢杆菌0-9是由本实验室分离保存的小麦内生细菌,该细菌对小麦纹枯病有很强的生物防治作用。1.2.1增强宿主竞争优势的作用竞争作用是内生芽孢杆菌在寄主体内发挥作用的重要机制之一,主要通过内生菌与病原菌相互竞争位点来夺取营养物质,从而抑制植物病害的发生。竞争作用与施用剂量、时间、定殖能力及种群建立状况密切相关。研究表明,芽孢杆菌进入植物体内的途径和方式与病原菌基本相似[1],进入寄主体内以后,芽孢杆菌会优先占据病原菌的入侵点,与病原菌争夺营养,可有效降低该病原菌及其毒素的积累。1.2.2增强宿主接抗性的作用拮抗作用是指内生菌通过同化作用产生抗菌物质抑制病原菌生长或直接杀死病原菌。芽孢杆菌能够分泌多种抗真菌和细菌作用的拮抗物质,它们对病原菌具有直接的抑制作用。刘建国等[2]研究发现B.cereusS1能产生新型抗真菌环状多肽APS,抑菌实验表明,此多肽有广泛的抗菌谱且抑菌持久,对病原真菌的孢子萌发和菌丝的生长均具有显著的抑制作用。关于抑菌机制各国学者有不同的看法,有待深入研究。1.2.3促进宿主植物生长的作用感染很多内生菌进入植物体内后,寄主植物都会表现出明显的生长作用。研究发现,内生芽孢杆菌能产生或诱导植物产生生长素(IAA)、赤霉素(GA3)、玉米素(ZR4)等,这些生长激素能促进植物生长。唐文华等(1992)曾对7株蜡样芽孢杆菌增产菌的发酵液进行了植物生长激素类物质的高压液相色谱分析,结果发现吲哚乙酸、玉米素和赤霉素在所有菌株中普遍存在,吲哚乙酸的含量较高且稳定,说明增产菌所产生的植物激素是其促进植物生长发育的重要原因之一[3]。此外,一些菌株能合成嗜铁素、有机酸等物质,促进寄主植物对氮、磷等营养元素的吸收。王东明等[4]筛选的蜡样芽孢杆菌6371能转化有机氮磷,分泌有机酸,降解土壤中难溶性无机盐,分泌抗菌物质,抑制病源菌的生长,增强植物抗逆境胁迫的能力。1.2.4帮助宿主诱导植物抗性的作用芽孢杆菌能够诱导寄主植物产生一些物理结构上的抗性(例如形成生物膜等形式),从而限制病原菌进一步侵入。Benhamou等[5]用内生菌B.pumilusSE34预接种基因转化豌豆,然后接种病菌。在病菌企图侵入部位大量沉积木质和酚类物质,使这些部位的细胞胞壁得到加厚,有效阻止了病菌的侵入。此外,芽孢杆菌还能诱导寄主植物生理生化发生变化,积累相关蛋白,合成一些代谢产物,产生水解酶和氧化酶等(如几丁质酶、β-1,3葡聚糖酶、过氧化物酶),从而抑制病原菌生长。蜡样芽孢杆菌便能分泌超氧化物歧化酶(SOD),使植物产生对病原菌的抗病性。尽管国内外学者就内生芽孢杆菌对植物的上述四种作用方式形成共识,然而相关的作用机制研究仍处于探索阶段。关于内生菌对病原菌的抑制作用、增强宿主植物抗逆性作用机制的研究报导较少,多为推论性或者是间接性的[6];对于内生菌在植物体内定植规律的研究尚处于探索阶段,随着分子生物学技术的发展,荧光标记技术、电镜免疫胶体金技术、酶联免疫反应技术和基因标记等技术被应用于内生菌的定殖规律研究[7-10],但由于宿主植物生活环境多样性以及内生菌与宿主植物关系的复杂性,加之植物内生菌起源演化的问题尚无定论,目前对于内生细菌进入植物的途径、在植株体内的定殖传导方式、内生细菌与寄主植物的互作用、生物学功能作用机制等不是很清楚[11]。只有对生防菌的抗菌机制、诱导抗性促生机理等深入研究,进一步完善基础理论,才能更好地开发和利用生防菌资源。1.3产胞外淀粉酶的菌株对生防的作用1.3.1胞外淀粉酶的检测方法淀粉酶是水解淀粉和糖原酶类的总称。淀粉酶能将可溶性淀粉、直链淀粉或者糖原分解为麦芽糖、糊精、葡萄糖等物质。淀粉与卢戈氏碘液产生反应生成蓝色物质,而被淀粉酶水解过生成的物质不会出现蓝色反应。由此可以在培养基中加入淀粉,然后用碘液染色,变蓝的地方说明有淀粉存在,没有变蓝的会出现一个透明的圈,这个范围内的淀粉被淀粉酶水解。故可以利用透明圈的大小来判断菌体产生淀粉酶的能力差异。1.3.2产胞外淀粉酶的腊状芽孢杆菌在小麦体内的定植小麦贮存物质主要以淀粉的形式存在于胚乳中,在小麦发芽时,胚乳中的淀粉会被动用,用于为萌发提供必要的营养、能量等。在萌发期间小麦会产生大量的淀粉酶将其储存的淀粉水解,以供萌发使用。腊状芽孢杆菌为小麦根部的有益菌群,能够有效抵御外界生物的侵害。但是这种芽孢杆菌由于营养和空间的限制不能很好的定植于小麦根部,故起到的防护作用不是很大。现在如果能够筛选出一种菌能够产生的胞外淀粉酶较多,能很好的利用小麦体内的营养,较为牢固的定植于小麦体内,那能够较为有效的抑制小麦的病虫害,为小麦的增产有很大的作用。1.40-9菌株蜡样芽孢杆菌,革兰阳性杆菌,大小为0.9-1.2μm×1.8-4.0μm,两端钝园,一般从短链到长链,培养6h后即可形成芽胞,芽胞位于菌体中央,椭圆形,不膨出。周生鞭毛。能运动。无荚膜。生长时需氧或兼性厌氧,在普通琼脂培养基中生长旺盛,形成较大、灰白色、表面粗糙似融蜡状菌落,因此而得名;在复杂培养基中能呈厌氧生长,葡萄糖和硝酸盐可促进厌氧生长;生长温度范围为5-30℃,10℃以下停止繁殖。其繁殖体不耐热,100℃经20min可被杀死。最适生长温度为28-35℃,生长酸碱度范围为pH4.3-9.0,生长最低水分活度为0.95。发酵葡萄糖,产酸并产气。蜡样芽孢杆菌0-9菌株是1株从健康小麦植株中分离获得的有益芽孢杆菌,为小麦内生细菌,属革兰氏阳性蜡样芽胞杆菌,运动性强,具有产生葡聚糖酶、几丁质酶和蛋白酶等真菌细胞壁降解酶和铁载体的能力。该细菌对小麦纹枯病病原菌有抑制作用,抑菌率50%~70%,实验室条件下防治效果高达82.86%。利用生防菌株0-9抗利福平(Rifampicin,Rif)标记法,得到300株抗Rif菌株。随机选取其中9株,通过形态学观察、革兰氏染色、芽孢染色、产酶能力、运动性、拮抗作用及耐盐性测试等实验,证实这些抗药标记菌株为0-9的衍生菌株,并保持对小麦纹枯病的防治效果。1.5研究背景及意义芽孢杆菌对马铃薯疮痂病、苹果红癌病、赤霉病等许多土传病害以及地上部病害具有生防的效果。用于生防的芽孢杆菌种类有枯草芽孢杆菌(B.subtilies)、多粘芽孢杆菌(B.polymyxa)、蜡状芽孢杆菌(B.acilluscereus)、蕈状菌变种(B.cereusvarmycoides)等。随着枯草芽孢杆菌作为革兰氏阳性代表菌株基因组被测序以来,同枯草芽孢杆菌有关的研究,特别是有关生化分析、分子生物学等方面基础理论研究持续展开。当今人们的环保意识在不断的增强,生物农药正在引起越来越多的关注。芽孢杆菌杀菌剂克服了传统化学农药污染环境、危害人畜、易产生抗性等缺点,具有选择性强、安全、原料简单等优点,在微生物杀菌剂市场中初露头角。很多优良的枯草芽孢杆菌菌株已经应用于生产实践。在生防应用中,让菌体能很好定植是一个很重要的问题。但是菌体由于营养的限制总是不能再植物体内形成优势菌株,不能对植物形成有效的保护伞。那么我们的迫切要求改良菌种的遗传物质,使其能够很好的利用植物体内的营养物质生存。碳源是限制菌种生存的主要原因,如能够将0-9菌株遗传物质改良为能够很好利用小麦淀粉的菌,那么会对小麦生物防治病虫害有良好的效果。2材料与方法2.1供试材料2.2.1供试菌株菌种0-9。由河南大学实验室从健康小麦体内分离得到,0-9为蜡样芽孢杆菌。菌株保存于-70℃超低温冰箱。2.1.2培养基LB培养基:蛋白胨10.0g,酵母提取物5g,NaCl10.0g,蒸馏水1000mL,PH7.0。一部分加入2%(w/w)琼脂用来制备固体LB培养基,另一部分制备液体LB培养基。灭菌条件:121℃、0.11Mpa灭菌20min。淀粉培养基:可溶性淀粉5.0g,加热至淀粉溶解,蛋白胨10.0g,牛肉膏3.0g,定容至1000mL,PH7.0,加入2%(w/w)琼脂制备固体淀粉培养基。灭菌条件:121℃、0.11Mpa灭菌20min。2.1.3所用试剂(1)卢戈氏碘液碘化钾0.4g碘片0.2g③蒸馏水60mL(2)红霉素(3)卡那霉素2.1.3实验器材小试管EP管水浴箱平皿枪头摇床滴管牙签涂布棒接种环2.2实验方法2.2.1菌株活化配制LB液体培养基,灭菌三角瓶,200mLLB液体培养基中接入取-70℃冰箱中保存的0-920μL,放入摇床,30℃200rpm下培养24h。2.2.2菌株转座配制LB固体培养基,倒平板。用无菌水稀释菌悬液至10-5、10-6浓度。吸取2mL10-6浓度的菌悬液涂布到平板上,一定要涂布均匀。将培养箱升温至46℃,将倒好的平板放入培养箱转座10小时。2.2.3菌种转接配制LB固体培养基,100mL培养基中加入卡那霉素50μL,另外100mL培养基中加入红霉素20μL,分别摇匀,倒平板,分别标明Erm1-5、Kan1-5。用灭菌好的牙签挑取单菌落,先在红霉素的平板上接种,然后在卡那霉素的平板上的相应位置接种。将接种好的平板放入30℃的培养箱中培养36小时。将培养好的菌放入超净台,挑取在加红霉素板上长而在加卡那霉素板上没有长的菌落,接种到新的板上。同样是先点种红霉素板,再点种卡那霉素板,放入30℃的培养箱中培养36小时。2.2.4菌种保存配制LB液体培养基,分装到大试管中,每个试管5mL。用灭好菌的枪头挑取在加卡那霉素板上长而在加红霉素的板上不长的菌株,接种到试管中,放入摇床,30℃200rpm下培养24h。EP管中加700μL50%的甘油,再吸取700μL菌悬液加到管中,摇匀。编号,保存至-70℃冰箱。2.2.5菌种活化配制LB液体培养基,灭过小试管,每个瓶中加入2mLLB液体培养基,接入20μL保藏的菌株,放入摇床,30℃200rpm下培养24h。()2.2.6菌悬液的浓度的调节配制LB液体培养基,灭过三角瓶,每个瓶中加入100mLLB液体培养基,接入1mL已活化的菌悬液,放入摇床,30℃200rpm下培养24h。首先测量每个菌的OD值,用灭过菌的LB培养基稀释调节至各个菌的OD值至相同。配制淀粉固体培养基,倒平板。2.2.7菌株的初筛配制淀粉固体培养基,倒平板。用枪头吸取2μL已调好相同浓度的菌悬液点种到平板上,一个平板点种7个菌,每个菌重复三次,将点种好的平板放入30℃的培养箱培养24h。将培养好的平板中滴加卢戈氏碘液,染色。并量取不同菌落的透明圈的大小。2.2.8菌株的复筛为保证目标菌株的培养条件相同,将疑似菌株点种到同一个平板上,将点种好的平板放入30℃的培养箱培养24h。将培养好的平板中滴加卢戈氏碘液,染色。并量取不同菌落的透明圈的大小。3结果现象与分析3.1菌落染色结果转座得到100个突变体,编号从1至100。0-9、1-100号菌株培养24h后,对其进行碘液染色。结果显示,0-9和36、38、56、94号菌的透明圈出现较大差异(表1图:1)。菌株0-9在培养24h后形成的透明圈直径大小为14.5mm,菌株36、38、56、94形成的透明圈直径大小分别为20.7mm、19.2mm、9.0mm、9.6mm。表10-9菌株与目标菌株透明圈直径菌号 透明圈直径大小(mm) 现象 重复1 重复2 重复3 平均值 0-9 13.3 15.6 14.6 14.5 透明圈直径大小适中36 21.1 20.9 20.3 20.7 透明圈直径比对照菌大的多38 18.6 17.3 20.7 19.2 透明圈直径比对照菌大的多56 8.2 11.4 7.3 9.0 透明圈直径比对照菌小的多94 9.2 8.7 10.9 9.6 透明圈直径比对照菌小的多图136、38、56、94与0-9菌株透明圈直径3.2结果分析3.2.1胞外淀粉酶产生腊状芽孢杆菌0-9是从一株健康小麦植株中分离获得的有益芽孢杆菌,为小麦内生细菌,产生的胞外淀粉酶能够将小麦体内的淀粉分解为菌体能更好利用的物质(如:麦芽糖)。调控0-9菌分泌胞外淀粉酶的基因位于菌体的结构基因中。从实验的36、38号菌来看,它们的透明圈直径都远大于对照组0-9号菌株的透明圈直径。调控分泌胞外淀粉酶的基因遭到破坏之后可能导致产生的淀粉酶的量更大,但从56、94号菌来看,它们透明圈的直径又小与对照组0-9的透明圈直径。这说明基因被插入的位置不同也可能导致胞外淀粉酶的合成能力或者是分泌能力下降,最终导致产生的淀粉酶的量较对照组小。因此,在细菌分泌胞外淀粉酶的量和多个因素有关。最主要的是芽孢杆菌内部的基因调控。淀粉酶基因本身的表达能力受到多个基因的调控,基因内部的调控基因、启动子受到破坏或者是被外源基因插入后都会导致淀粉酶产生的多少受到影响。芽孢杆菌膜系统的分泌能力和淀粉酶的运输能力都与最终检测到的透明圈直径的大小有关。3.2.2原因分析36、38、56、94号菌株由0-9转座而来,36、38号菌产生的胞外淀粉酶的量远大于对照组的产生量,56、94号菌产生的胞外淀粉酶的量远小于对照组的产生量可能的原因如下:(1)36、38号菌由于转座的基因强化了淀粉酶基因的启动子,使淀粉酶的转录与翻译量增加。转座的基因插入到控制芽孢杆菌膜系统合成的基因中,导致芽孢杆菌合成的膜为不完整或者是通透性比较大的膜,从而导致分泌的淀粉酶量较多。转座的基因插入到编码运输淀粉酶到膜外载体的基因中,导致载体的量增加或者运输能力增强,从而使胞外淀粉酶的量增加。(2)56、94号菌由于转座的基因若化了淀粉酶基因的启动子,使淀粉酶的转录与翻译量减小。转座的基因插入到控制芽孢杆菌膜系统合成的基因中,导致芽孢杆菌合成的膜通透性更小,从而导致分泌的淀粉酶量较少。转座的基因插入到编码运输淀粉酶到膜外载体的基因中,导致载体的量减小或者运输能力减弱,从而使胞外淀粉酶的量降低。(3)操作方面:由于各个菌株数目较多,不是同一批活化并测量,由于个人或者天气的原因,导致菌生长不是在恒定的条件下进行,从而导致菌的胞外淀粉酶的产生能力有差异。3.2.3重复不一致的原因分析每个菌株的两个重复实验的数据均有所差异,分析原因,可能有:(1)由于菌悬液的差异会导致不一致。因为枪头的原因会导致点种时量不一定完全相同,OD值虽然相同,但是菌悬液的浓度还是会有一定的差异,从而导致接种的菌量有差异。(2)平板培养时使用的平板不同,透气性能可能有所不同,影响到菌体生长。(3)平板中的培养基的厚度不同,导致重复的结果有差异。(4)由于个人原因量取透明圈的大小时有差异。4讨论4.1菌种活化与三角瓶培养的作用菌株在冷冻保藏条件下处于休眠状态,接种前需进行活化培养,使其恢复最佳生长状态,生理状态水平达到稳定。本实验要求每个菌株在点种到平板培养之前,各个的菌体数量、生理状态水平一致,因此在试管培养活化菌株后,需要在试管中培养一定的时间。为确保实验数据的准确性,需通过测OD值等方法使菌液浓度尽量达到一致。4.2透明圈大小和外界各方面因素的关系(1)接种量:接种量大小对菌株生长及淀粉酶分泌有一定影响,接种量大会导致菌体的生长旺盛,生长产生的菌落较大,从而影响到淀粉酶透明圈的大小。(2)培养基浓度:培养基的浓度较小时,会导致淀粉酶在菌落周围扩散较快,从而产生的透明圈较大,否则将会透明圈直径较小。(3)培养基组成对胞外淀粉酶分泌的影响:①在培养基成分中,PH值、温度、离子强度等因素影响菌体膜的流动性及通透性,从而影响淀粉酶的分泌量。②培养基中Mg+培养的浓度会影响到运输淀粉酶的分泌的速度,进而影响透明圈的大小。4.3实验缺陷及改进(1)只从碘液染色发来度量菌体产生胞外淀粉酶的能力的方法有缺陷,因为透明圈的大小与很多因素有关,复筛应该用3,5-二硝基水杨酸显色法[12]的方法来再次验证。(2)最后淀粉酶的量的多少不能简单的通过透明圈的直径大小本相对证明菌产生淀粉酶的能力大小,而应该通过将其产生的淀粉酶提取,测其酶活力,这样会更有说服力。(3)本实验只研究了不同菌体突变体产生淀粉酶的能力差异,还应该考虑到同一菌株不同的培养条件(如:通气量、温度、PH、离子强度等)对其产生淀粉酶量的影响。4.4实验注意事项转座时需要预先将培养箱升温至46℃,否则将会影响到转座的效果。菌株保存时一定要摇匀,否则影响保存效果。转座涂布时一定到涂布均匀,培养基厚度应该较薄,否则将会出现的单菌落较少。倒固体LB培养基时要避免平板上出现气泡,否则将会影响到点种的观察。点种菌时要注意位置一定要对应好。一定要先点种红霉素平板再点种卡那霉素平板,否则将会出现假阳性菌株。4.5实验展望将分离到的四种菌分别侵染到小麦体内,对小麦的敌抗病虫害能力进行测定,胞外淀粉酶的分泌能力与生防的作用还有待确定,因此应开展生防实验[13],探求植物量与所需淀粉酶的关系,病虫害的类型与淀粉酶分泌多少的相关关系。参考文献[1]张炳欣,张平,陈晓斌,等.影响引入微生物根部定殖的因素[J].应用生态学报,2001,11(6):951–953.[2]刘建国,裴炎,丛威,等.蜡状芽孢杆菌S1发酵条件的研究[J].工业微生物,2001,31(1):4–7.[3]焦文沁.蜡样芽孢杆菌A-47增效因子的筛选及增效机制初探[D].北京:中国农业大学,2005.[4]王东明.蜡样芽孢杆菌6371的多效性及发酵条件的研究[D].南京:南京师范大学,2004

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论