爱立信白皮书 Massive MIMO for 5G networks_第1页
爱立信白皮书 Massive MIMO for 5G networks_第2页
爱立信白皮书 Massive MIMO for 5G networks_第3页
爱立信白皮书 Massive MIMO for 5G networks_第4页
爱立信白皮书 Massive MIMO for 5G networks_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

EricssonWhitePaper

BNEW-23:004809UEN

UpdatedFebruary2023

MassiveMIMO

for5Gnetworks

RecenttechnologydevelopmentshavemadeMassiveMIMOthepreferredoption

forlarge-scaledeploymentsin5Gmobilenetworks.MassiveMIMOenables

state-of-the-artbeamformingandMIMOtechniquesthatarepowerfultools

forimprovingend-userexperience,capacity,andcoverage.Asaresult,Massive

MIMOsignificantlyenhancesnetworkperformanceinbothuplinkanddownlink.

FindingthemostsuitableMassiveMIMOvariantstoachievethepotential

performancegainsandcostefficiencyinaspecificnetworkdeploymentrequires

anunderstandingofthecharacteristicsofMassiveMIMOsolutions.

MassiveMIMOfor5Gnetworks4

WhatisaMassiveMIMOsolution?

February2023

Whatisa

MassiveMIMO

solution?

AMassiveMIMOsolutionorsimplyMassiveMIMO(formerlycalledadvancedantenna

system,orAAS)isacombinationofaMassiveMIMOradioandasetofMassiveMIMO

features.AMassiveMIMOradioconsistsofanantennaarraytightlyintegratedwiththe

hardwareandsoftwarerequiredforthetransmissionandreceptionofradiosignals,and

signalprocessingalgorithmstosupporttheexecutionoftheMassiveMIMOfeatures.

Comparedtoconventionalsystems,thissolutionprovidesmuchgreateradaptivityand

steerability,intermsofadaptingtheantennaradiationpatternstorapidlytime-varying

trafficandmulti-pathradiopropagationconditions.Inaddition,multiplesignalsmaybe

simultaneouslyreceivedortransmittedwithdifferentradiationpatterns.

Multi-antennatechniques

Multi-antennatechniques(herereferredtoasMassiveMIMOfeatures)includeallvariants

ofbeamforming,null-forming,andMIMO.ApplyingMassiveMIMOfeaturestoaMassive

MIMOradioresultsinsignificantperformancegainsbecauseofthehigherdegreesof

freedomprovidedbyalargenumberofradiochains.

Beamforming

Duringtransmission,beamformingistheabilitytodirectradiopowerthroughtheradio

channeltowardaspecificreceiver,asshowninthetopleftquadrantofFigure1.By

adjustingthephaseandamplitudeofthetransmittedsignals,constructiveadditionofthe

correspondingsignalsattheuserequipmentreceivercanbeachievedwhichincreasesthe

receivedsignalstrengthand,thus,theend-userthroughput.Similarlyduringreception,

beamformingistheabilitytocollectthesignalpowerfromaspecifictransmitter.Thebeams

formedareconstantlyadaptedtothesurroundingstogivehighperformanceinbothuplink

(UL)anddownlink(DL).

MassiveMIMOfor5Gnetworks5

WhatisaMassiveMIMOsolution?

February2023

A.BeamformingB.Generalizedbeamforming

ServesingleusersbydirectingtheServesingleuserthroughsendingthe

energytowardtheuser.samedatastreamindifferentdirections

andpossiblyformingzeros(nulls)in

directionsofotherusers.

X

C.Single-userMIMOD.Multi-userMIMO

IncreasedataratesbytransmittingAthighload,servemoreusers

severaldatastreamstoauser.simultaneously.

X

Figure1:BeamformingandMIMOwiththedifferentcolorsofthefilledbeamsthatrepresent

differentdatastreams

Althoughoftenveryeffective,transmittingpowerinonlyonedirectiondoesnotalways

provideanoptimumsolution.Inmulti-pathscenarios,wheretheradiochannelcomprises

multiplepropagationpathsfromthetransmittertoreceiverthroughdiffractionaround

cornersandreflectionsagainstbuildingsorotherobjects,itisbeneficialtosendthesame

datastreaminseveraldifferentpaths(directionand/orpolarization)withphasesand

amplitudescontrolledinawaythattheyaddconstructivelyatthereceiver[2].Thisis

referredtoasgeneralizedbeamforming,asshownintheupperrightquadrantofFigure1.

Aspartofgeneralizedbeamforming,itisalsopossibletoreduceinterferencetootherUEs,

whichisknownasnull-forming.Thisisachievedbycontrollingthetransmittedsignalsina

waythattheycanceleachotheroutatUEsthatwouldotherwisebeinterfered.

Notethattheconceptofgeneralizedbeamformingcanbeconsiderablymorecomplexthan

illustratedinFigure1,seeforexample[2,Ch.6].

MIMO(MultipleInput,MultipleOutput)techniques

Spatialmultiplexing,herereferredtoasMIMO,istheabilitytotransmitmultipledata

streams,usingthesametimeandfrequencyresource,whereeachdatastreamcanbe

beamformeddifferently.ThepurposeofMIMOistoincreasethroughput.MIMObuilds

onthebasicprinciplethatwhenthereceivedsignalqualityishigh,itisbettertoreceive

multiplestreamsofdatawithreducedpowerperstream,thanonestreamwithfullpower.

MassiveMIMOfor5Gnetworks6

WhatisaMassiveMIMOsolution?

February2023

Thepotentialislargewhenthereceivedsignalqualityishigh,andthebeamscarryingthe

datastreamsaredesignednottointerferewitheachother.Thepotentialdiminisheswhen

themutualinterferencebetweenstreamsincreases.MIMOworksinbothULandDL,butfor

simplicity,thedescriptionbelowwillbebasedontheDL.Thedetailsofhowtheseworkare

explainedindetailin[2,Ch.4,6,13].

Single-userMIMO(SU-MIMO)istheabilitytotransmitoneormultipledatastreams,also

calledlayers,fromonetransmittingarraytoasingleuser.SU-MIMOcantherebyincrease

thethroughputforthatuserandincreasethecapacityofthenetwork.Thenumberoflayers

thatcanbesupported,calledtherank,dependsontheradiochannelandtheminimum

numberofantennasoneachside.TodistinguishbetweenDLlayers,aUEmusthaveatleast

asmanyreceiverantennasastherearelayers.

SU-MIMOcanbeachievedbysendingdifferentlayersondifferentpolarizationsinthesame

direction.SU-MIMOcanalsobeachievedinamulti-pathenvironment,wherethereare

manyradiopropagationpathsofsimilarstrengthbetweentheMassiveMIMOradioandthe

UE,bysendingdifferentlayersondifferentpropagationpaths,asshowninthebottomleft

quadrantofFigure1.

Inmulti-userMIMO(MU-MIMO),whichisshowninthebottomrightquadrantofFigure1,

differentlayersinseparatebeamsaretransmittedtodifferentusersusingthesametime

andfrequencyresource,therebyincreasingthenetworkcapacity.TouseMU-MIMO,the

systemneedstofindtwoormoreusersthatneedtotransmitorreceivedataatthevery

sametime.Also,forefficientMU-MIMO,theinterferencebetweentheusersshouldbekept

low.Thiscanbeachievedbyusinggeneralizedbeamformingwithnullformingsuchthat

whenalayerissenttooneuser,nullsareformedinthedirectionsoftheothersimultaneous

users.

TheachievablecapacitygainsfromMU-MIMOdependonreceivingeachlayerwithgood

signal-to-interference-and-noise-ratio(SINR).AswithSU-MIMO,thetotalDLpoweris

sharedbetweenthedifferentlayers,andthereforethepower(andthusSINR)foreachuser

isreducedasthenumberofsimultaneousMU-MIMOusersincreases.Also,asthenumberof

usersgrows,theSINRwillfurtherdeteriorateduetomutualinterferencebetweentheusers.

Therefore,thenetworkcapacitytypicallyimprovesasthenumberofMIMOlayersincreases

toapointatwhichpowersharingandinterferencebetweenusersresultindiminishing

gainsandeventuallyalsolosses.

ItshouldbenotedthatthepracticalbenefitsofmanylayersinMU-MIMOarelimitedbythe

factthat,intoday'srealnetworks,evenwithahighnumberofsimultaneouslyconnected

users,theretendnottobemanyuserswhowanttoreceivedatasimultaneously.Thisisdue

tothebursty(chatty)natureofdatatransmissiontomostusers.SincetheMassiveMIMO

andthetransportnetworkmustbedimensionedforthemaximumnumberoflayers,the

CSPneedstoconsiderhowmanylayersarerequiredintheirnetworks.Intypicalmobile

broadband(MBB)deploymentswiththecurrent64T64RMassiveMIMOvariants,thevast

majorityoftheDLandULcapacitygainscanbeachievedwithupto8layers.Forother

servicesthanMBB,e.g.fixedwirelessaccess(FWA),thereisuseformorelayerscompared

toMBB.EightlayersarehoweverusuallysufficientalsoforFWA.

MassiveMIMOfor5Gnetworks7

WhatisaMassiveMIMOsolution?

February2023

AcquiringchannelknowledgeforMassiveMIMO

Knowledgeoftheradiochannelsbetweentheantennasoftheuserandthoseofthe

basestationisakeyenablerforbeamformingandMIMO,bothforULreceptionandDL

transmission.ThisallowstheMassiveMIMOtoadaptthenumberoflayersanddetermine

howtobeamformthem.

ForULreceptionofdatasignals,channelestimatescanbedeterminedfromknownsignals

receivedontheULtransmissions.Channelestimatescanbeusedtodeterminehowto

combinethesignalsreceivedtoimprovethedesiredsignalpowerandmitigateinterfering

signals,eitherfromothercellsorwithinthesamecell.

DLtransmission,ontheotherhand,istypicallymorechallengingthanULreceptionbecause

channelknowledgeneedstobeavailablebeforetransmission.Whereasbasicbeamforming

hasrelativelylowrequirementsonthenecessarychannelknowledge,generalized

beamforminghashigherrequirementsasmoredetailsaboutthemulti-pathpropagation

areneeded.Furthermore,mitigatinginterferencebyusingnull-formingforMU-MIMOis

evenmorechallenging,sincemoredetailsofthechannelstypicallyneedtobecharacterized

withhighgranularityandaccuracy.TherearetwobasicwaysofacquiringDLchannel

knowledge:UEfeedbackandULchannelestimation.

ToacquireDLchannelknowledgebasedonUEfeedback,thebasestationtransmitsknown

signalsintheDLthatUEscanuseforchannelestimation.Relevantchannelinformationis

thenextractedfromthechannelestimatesandfedbacktothebasestation.

WhattypeofDLchannelknowledgecanbeacquiredbasedonULchannelestimation,also

referredtoasULsounding,dependonwhethertimedivisionduplex(TDD)orfrequency

divisionduplex(FDD)isused.ForTDD,thesamefrequencyisusedforbothULandDL

transmission.Sincetheradiochannelisreciprocal(thesameinULandDL),detailedshort-

termchannelestimatesfromULtransmissionofknownsignalscanbeusedtodetermine

theDLtransmissionbeams.Thisisreferredtoasreciprocity-basedbeamforming.Forfull

channelestimation,signalsshouldbesentfromeachUEantennaandacrossallfrequencies.

ForFDD,wheredifferentfrequenciesareusedforULandDL,thechannelisnotfully

reciprocal.Longer-termchannelknowledge(suchasdominantdirections)can,however,be

obtainedbysuitableaveragingofULchannelestimatestatistics.

ThesuitablechannelknowledgeschemetousedependsonULcoverageandUE

capabilities.IncaseswhereULcoverageislimiting,UEfeedbackoffersamorerobust

operation,whereasfullULchannelestimationisapplicableinscenarioswithgood

coverage.Inshort,bothreciprocityandUEfeedback-basedbeamformingareneeded.

Antennaarraystructure

Thepurposeofusingarectangularantennaarray,asshowninsectionAofFigure2,isto

enablehigh-gainbeamsandmakeitpossibletosteerthosebeamsoverarangeofanglesin

horizontalandverticaldirections.Thegainisachieved,inbothULandDL,byconstructively

combiningsignalsfromseveralantennaelements.Typically,themoreantennaelements

thereare,thehigherthegain.Steerabilityisachievedbyindividuallycontrollingthe

amplitudeandphaseofsmallerpartsoftheantennaarray.Thisisusuallydonebydividing

MassiveMIMOfor5Gnetworks8

WhatisaMassiveMIMOsolution?

February2023

theantennaarrayintosocalledsub-arrays(groupsofnon-overlappingelementspairs),as

showninsectionCofFigure2andbyapplyingtwodedicatedradiochainspersub-array

(oneperpolarization)toenablecontrol,asshowninsectionD.Inthisway,itispossibleto

controlthedirectionandotherpropertiesofthecreatedbeam.

A.B.C.D.

Figure2:Atypicalantennaarray(A)ismadeupofrowsandcolumnsofindividualdual-polarized

antennaelementpairs(B).Antennaarrayscanbedividedintosub-arrays(C),witheachsub-array

(D)connectedtotworadiochains,normallyoneperpolarization.

Toseehowanantennaarraycreatessteerablehigh-gainbeams,westartwithan

antennaarrayofaspecificsize,whichisthendividedintosub-arraysofdifferentsizes.For

illustrativepurposes,wedescribeonlyonedimension.Thesameprinciplesdo,however,

applytobothverticalandhorizontaldimensions.

Thearraygainisreferredtoasthegainachievedwhenallsubarraysignalsareadded

constructively(inphase).Thesizeofthearraygain,relativetothegainofonesub-array,

dependsonthenumberofsub-arrays–forexample,twosub-arraysgiveanarraygainof2

(i.e.3dB).Bychangingthephasesofthesub-arraysignalsinacertainway,thisgaincanbe

achievedinanydirection,asshowninsectionAofFigure3.

Eachsub-arrayhasacertainradiationpatterndescribingthegainindifferentdirections.

Thegainandbeamwidthdependonthesizeofthesub-arrayandthepropertiesofthe

individualantennaelements.Thereisatrade-offbetweensub-arraygainandbeam

width–thelargerthesub-array,thehigherthegainandthenarrowerthebeamwidth,as

illustratedinsectionBofFigure3.

Thetotalantennagainistheproductofthearraygainandthesub-arraygain,asshown

insectionCofFigure3.Thetotalnumberofelementsdeterminesthemaximumgainand

thesub-arraypartitioningallowsthesteeringofhigh-gainbeamsovertherangeofangles.

Moreover,thesub-arrayradiationpatterndeterminestheenvelopeofthenarrowbeams

(thedashedshapeinsectionCofFigure3).Thishasanimplicationonhowtochoosean

antennaarraystructureinarealdeploymentscenariowithspecificcoveragerequirements.

Sinceeachsub-arrayisnormallyconnectedtotworadiochainsandeachradiochain

isassociatedwithacostintermsofadditionalcomponents,itisimportanttoconsider

MassiveMIMOfor5Gnetworks9

WhatisaMassiveMIMOsolution?

February2023

theperformancebenefitsofadditionalsteerabilitywhenchoosingacost-efficientarray

structure.

A.B.C.

6dB

4α4α

6dB

3dB

2α2α

3dB

6dB

αα

0dB

ArraygainxSub-arraygain=Totalantennagain

Figure3:Anarrayofsub-arrayssupportinghightotalantennagainandsteerability

MassiveMIMOfor5Gnetworks10

Deploymentscenarios

February2023

Deployment

scenarios

DeterminingwhatkindofMassiveMIMOconfigurationismostappropriateandcost-

effectiveforaparticulardeploymentscenariorequiresamixofknowledgeaboutthe

scenario,possiblesiteconstraints,andavailableMassiveMIMOfeatures,particularlythe

needforverticalsteerabilityofbeams,theapplicabilityofreciprocity-basedbeamforming

andthegainfromMU-MIMO.Itshouldbenotedthathorizontalbeamformingisavery

effectivefeaturethatprovideslargegainsinallscenariossincetheusersaregenerally

spreadinthehorizontaldimension.Therefore,alargenumberofcolumnsisbeneficialinall

scenarios.

WehavechosenthreetypicalusecasestoillustratedifferentaspectsofMassive

MIMOdeployment:rural/suburban,urbanlow-rise,anddenseurbanhigh-rise.More

comprehensiveandpracticallyusefulrecommendationscanbefoundin[3].Thescenarios,

includingrelevantcharacteristics,suitableMassiveMIMOconfigurations,andperformance

potentialaredepictedinFigure4.Moreelaborateevaluationsoftheperformance

achievablewithMassiveMIMOareavailableinreference[2]and[3].

MassiveMIMOfor5Gnetworks11

Deploymentscenarios

February2023

2x1sub-array-64T64RRelativecapacity

Denseurbanhigh-rise

ISD-200-500m

A.

2T16T32T64T

MU-MIMOSU-MIMO

4x1sub-array-32T32RRelativecapacity

Urbanlow-rise

ISD-500-1000m

B.

2T16T32T64T

MU-MIMOSU-MIMO

8x1sub-array-16T16RRelativecapacity

Table1:Comparisonofthesimplestregular5GdevicewithSurburbanthesimplestandrural

andthemostadvancedRedCapdeviceISD>1000m

C.

2T16T32T64T

MU-MIMOSU-MIMO

Figure4:SuitableMassiveMIMOconfigurations,schematicMU-MIMOandSU-MIMOusage

ranges,andtypicalcapacitygainsindifferentdeploymentscenarios

Deploymentscenario#1:Denseurbanhigh-rise

AsdepictedinsectionAofFigure4,thedenseurbanhigh-risescenarioischaracterized

byhigh-risebuildings,shortinter-site-distances(ISDs)of200-500m,largetrafficvolume,

andhighsubscriberdensitywithsignificantuserspreadintheverticaldimension.Themain

networkevolutiondriverhasincreasedcapacityorequivalentlyhighend-userthroughput

foragiventrafficload.

Forconventionalnon-beamformedsystemssuchas2T2R,theverticalspreadofusers

incombinationwiththesmallISDcreatesasituationwheremanyusersareoutsidethe

verticalmainbeamofthenearestbasestation.Togetherwiththehighsitedensity,this

leadstoasituationwherethesignalsfrominterferingbasestationsarestrong,andsevere

interferenceproblemsmayoccur.

DesiredMassiveMIMOcharacteristicsinthedenseurbanhigh-risescenarioincludean

antennaarealargeenoughtoensuresufficientcoverage(ULcell-edgedatarate).Further,

theverticalcoveragerangeneedstobelargeenoughtocovertheverticalspreadofusers.

Thiscallsforsmallsub-arrays,whichhaveawidebeamintheverticaldirection.Partitioning

theantennaintosmallverticalsub-arraysresultsinhigh-gainbeamsthatcanbesteered

overalargerangeofanglesandeffectivelyaddressestheinterferenceproblemsseenwith

conventionalsystems.TheMassiveMIMOradioneedstohaveasufficientnumberofradio

chainstosupporttherelativelylargenumberofsub-arrays.Thegoodcoverageandlarge

spreadofusersmeanthatthepotentialforreciprocity-basedbeamformingandMU-MIMO

witharelativelylargenumberofmultiplexedusersishigh,andtheMassiveMIMOradio

MassiveMIMOfor5Gnetworks12

Deploymentscenarios

February2023

shouldsupportthesetechniques.Agoodtrade-offbetweencomplexityandperformance

couldbeachievedwith64radiochainscontrollingsmallsub-arrays.

Deploymentscenario#2:Urbanlow-rise

Theurbanlow-risescenarioillustratedinsectionBofFigure4representsmanyofthelarger

citiesaroundtheworld,includingtheoutskirtsofmanyhigh-risecities.Basestationsare

typicallydeployedonrooftops,withinter-sitedistancesofafewhundredmeters.Compared

tothedenseurbanhigh-risescenario,trafficperareaunitislower.Thereisgenerallya

mixofbuildingtypes,whichcreatesmultipathpropagationbetweentheMassiveMIMO

radioandtheUE.MaximizingtheantennaareaisimportantforimprovingtheULcell-edge

datarates,especiallyforhigherfrequencybandsemployingTDD.DuetolargerISDsand

decreasedverticalspreadofusers(lowerbuildings),theverticalcoveragerangecanbe

decreasedcomparedtodenseurbanhigh-rises;hence,largerverticalsub-arrayscanbe

usedandthereislessgainfromverticalbeamforming.Usinglargersub-arraysforagiven

antennaareameansthatfewerradiochainsarerequired.Reciprocity-basedbeamforming

schemeswillworkformostusers,buttherewillbeuserswithpoorcoveragethatneedto

relyontechniquessuchasfeedback-basedbeamforming.MU-MIMOisalsoappropriate

athighloadsduetothemulti-pathpropagationenvironment,goodlinkqualities,andUE

pairingopportunities.Agoodtrade-offbetweencomplexityandperformanceisaMassive

MIMOradiowith16to32radiochains.

Deploymentscenario#3:Rural/suburban

Ruralorsuburbanmacroscenarios,asdepictedinsectionCofFigure4,arecharacterized

byrooftoportower-mountedbasestationswithinter-sitedistancesrangingfromone

toseveralkilometers,lowormediumpopulationdensityandverysmallverticaluser

distribution.ThisscenariocallsforaMassiveMIMOradiowithalargeantennaareaand

theabilitytosupporthorizontalbeamforming.Verticalbeamforming,however,doesnot

provideanysignificantgainsastheverticaluserspreadislow.Therefore,largevertical

sub-arrayswithsmallverticalcoverageareasarepossible.Reciprocity-basedbeamforming

issupportedforasmallerfractionofusersthanintheotherscenarios,andMU-MIMOgains

aremorelimited.Agoodtrade-offbetweencomplexityandperformanceisaMassiveMIMO

radiowith8to16radiochains.

MassiveMIMOfor5Gnetworks13

EvolutionofMassiveMIMO

February2023

Evolutionof

MassiveMIMO

ThebriefexplanationofMassiveMIMOabovereflectsthesolutionsinusetodate(2022-

Q4).TheevolutionofMassiveMIMOisveryrapid,andseveraltracksarebeinginvestigated

toachievehigherperformance.Afewexamplesincludetheuseofhighernumbersofradio

chains,largerarraypanels,theuseofnewandhigherfrequencies,andtheuseofmultiple

transmissionpoints(multi-TRP).Inadditiontoadvancementsintechnologiesspecific

toMassiveMIMO,theuseofinterworkingbetweenMassiveMIMOandconventional

radiosonotherfrequencybandsaddadditionalcapacitybeyondthesumofthetwo,

respectively.Otherdevelopingtechnologies,e.g.artificialintelligenceandmachine

learning(AI/ML)willalsobeappliedinMassiveMIMOtoimproveperformance.Yetother

technologydevelopments,relatingtoforexampleenergyperformance,costefficiency,

andsitedeployment,arecomingintousetomakeMassiveMIMOahighlycompetitiveand

commerciallyviableoptionformassdeploymentinalargevarietyofscenarios.

MassiveMIMOisalsousedtosupportagrowingnumberofservicesinadditiontoMBB.

TodayMassiveMIMOisalreadyusedforFWA,IoTandnewindustriesandinthenear

futurealsoXRservices.Withthedevelopmentofprivatenetworks,thenumberofservices

supportedisexpectedtogrowveryfast.

MassiveMIMOfor5Gnetworks14

Conclusion

February2023

Conclusion

RecenttechnologydevelopmentshavemadeMassiveMIMO(advancedantennasystems)

apreferredoptionforlarge-scaledeploymentsin4Gand5Gmobilenetworks.Massive

MIMOenablesstate-of-the-artbeamformingandMIMOtechniquesthatarepowerful

toolsforimprovingend-userexperience,capacity,andcoverage.Asaresult,MassiveMIMO

significantlyenhancesnetworkperformanceinbothuplinkanddownlink.

TheMassive-MIMOsolutiontoolboxisversatileandselectingasuitableMassiveMIMO

(2x)solutiondependsonaspectssuchasdeploymentenvironment,trafficloadvariations

andease-of-deployment.MassiveMIMOproductsprovidesignificantbenefitsacrossa

verywiderangeofdeploymentscenarios,makingitpossibleformobilenetworkoperators

toenjoythebenefitsofcost-efficientMassiveMIMOacrosstheirnetworks.MassiveMIMO

solutionshavealreadyproveninvaluableinmany5Gdeployments,andtheirimportance

willlikelytoincreaseevenfurtherinfuturenetworkdeployments.

MassiveMIMOfor5Gnetworks15

Keyterms

February2023

Keyterms

MassiveMIMOradio

Hardwareunitthatcomprisesanantennaarray,radiochains

andpartsofthebaseband,alltightlyintegratedtofacilitateMassiveMIMOfeatures

MassiveMIMOfeature

Amulti-antennafeature(suchasbeamformingorMIMO)thatcanbeexecutedinthe

MassiveMIMOradio,inthebasebandunitorboth

MassiveMIMO

MassiveMIMOradio+MassiveMIMOfeatures

MassiveMIMOfor5Gnetworks16

References

February2023

References

1.EricssonMobilityReport,June2022availableat

/49d3a0/assets/local/reports-papers/mobility-report/

documents/2022/ericsson-mobility-report-june-2022.pdf

2.Asplund,etal,“AdvancedAntennaSystemsfor5GNetworkDeployments:Bridging

theGapBetweenTheoryandPractice”,1stEdition,Elsevier2020,ISBN:978-0-12-

820046-9,AdvancedAntennaSystemsfor5GNetworkDeployments-1stEdition

()

3.Asplundetal,“TheMassiveMIMOhandbook”,Ericsson2022

/Massive-MIMO-handbook-extended-version-download.

html

MassiveMIMOfor5Gnetworks17

Furtherreading

February2023

Furtherreading

1.EricssonTechnologyReview,Designingforthefuture:the5GNRphysicallayer,

availableat:/en/ericsson-technology-review/archive/2017/

designing-for-the-future-the-5g-nr-physical-layer

2.EricssonTechnologyReview,EvolvingLTEtofitthe5

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论