版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
EricssonWhitePaper
BNEW-23:004809UEN
UpdatedFebruary2023
MassiveMIMO
for5Gnetworks
RecenttechnologydevelopmentshavemadeMassiveMIMOthepreferredoption
forlarge-scaledeploymentsin5Gmobilenetworks.MassiveMIMOenables
state-of-the-artbeamformingandMIMOtechniquesthatarepowerfultools
forimprovingend-userexperience,capacity,andcoverage.Asaresult,Massive
MIMOsignificantlyenhancesnetworkperformanceinbothuplinkanddownlink.
FindingthemostsuitableMassiveMIMOvariantstoachievethepotential
performancegainsandcostefficiencyinaspecificnetworkdeploymentrequires
anunderstandingofthecharacteristicsofMassiveMIMOsolutions.
MassiveMIMOfor5Gnetworks4
WhatisaMassiveMIMOsolution?
February2023
Whatisa
MassiveMIMO
solution?
AMassiveMIMOsolutionorsimplyMassiveMIMO(formerlycalledadvancedantenna
system,orAAS)isacombinationofaMassiveMIMOradioandasetofMassiveMIMO
features.AMassiveMIMOradioconsistsofanantennaarraytightlyintegratedwiththe
hardwareandsoftwarerequiredforthetransmissionandreceptionofradiosignals,and
signalprocessingalgorithmstosupporttheexecutionoftheMassiveMIMOfeatures.
Comparedtoconventionalsystems,thissolutionprovidesmuchgreateradaptivityand
steerability,intermsofadaptingtheantennaradiationpatternstorapidlytime-varying
trafficandmulti-pathradiopropagationconditions.Inaddition,multiplesignalsmaybe
simultaneouslyreceivedortransmittedwithdifferentradiationpatterns.
Multi-antennatechniques
Multi-antennatechniques(herereferredtoasMassiveMIMOfeatures)includeallvariants
ofbeamforming,null-forming,andMIMO.ApplyingMassiveMIMOfeaturestoaMassive
MIMOradioresultsinsignificantperformancegainsbecauseofthehigherdegreesof
freedomprovidedbyalargenumberofradiochains.
Beamforming
Duringtransmission,beamformingistheabilitytodirectradiopowerthroughtheradio
channeltowardaspecificreceiver,asshowninthetopleftquadrantofFigure1.By
adjustingthephaseandamplitudeofthetransmittedsignals,constructiveadditionofthe
correspondingsignalsattheuserequipmentreceivercanbeachievedwhichincreasesthe
receivedsignalstrengthand,thus,theend-userthroughput.Similarlyduringreception,
beamformingistheabilitytocollectthesignalpowerfromaspecifictransmitter.Thebeams
formedareconstantlyadaptedtothesurroundingstogivehighperformanceinbothuplink
(UL)anddownlink(DL).
MassiveMIMOfor5Gnetworks5
WhatisaMassiveMIMOsolution?
February2023
A.BeamformingB.Generalizedbeamforming
ServesingleusersbydirectingtheServesingleuserthroughsendingthe
energytowardtheuser.samedatastreamindifferentdirections
andpossiblyformingzeros(nulls)in
directionsofotherusers.
X
C.Single-userMIMOD.Multi-userMIMO
IncreasedataratesbytransmittingAthighload,servemoreusers
severaldatastreamstoauser.simultaneously.
X
Figure1:BeamformingandMIMOwiththedifferentcolorsofthefilledbeamsthatrepresent
differentdatastreams
Althoughoftenveryeffective,transmittingpowerinonlyonedirectiondoesnotalways
provideanoptimumsolution.Inmulti-pathscenarios,wheretheradiochannelcomprises
multiplepropagationpathsfromthetransmittertoreceiverthroughdiffractionaround
cornersandreflectionsagainstbuildingsorotherobjects,itisbeneficialtosendthesame
datastreaminseveraldifferentpaths(directionand/orpolarization)withphasesand
amplitudescontrolledinawaythattheyaddconstructivelyatthereceiver[2].Thisis
referredtoasgeneralizedbeamforming,asshownintheupperrightquadrantofFigure1.
Aspartofgeneralizedbeamforming,itisalsopossibletoreduceinterferencetootherUEs,
whichisknownasnull-forming.Thisisachievedbycontrollingthetransmittedsignalsina
waythattheycanceleachotheroutatUEsthatwouldotherwisebeinterfered.
Notethattheconceptofgeneralizedbeamformingcanbeconsiderablymorecomplexthan
illustratedinFigure1,seeforexample[2,Ch.6].
MIMO(MultipleInput,MultipleOutput)techniques
Spatialmultiplexing,herereferredtoasMIMO,istheabilitytotransmitmultipledata
streams,usingthesametimeandfrequencyresource,whereeachdatastreamcanbe
beamformeddifferently.ThepurposeofMIMOistoincreasethroughput.MIMObuilds
onthebasicprinciplethatwhenthereceivedsignalqualityishigh,itisbettertoreceive
multiplestreamsofdatawithreducedpowerperstream,thanonestreamwithfullpower.
MassiveMIMOfor5Gnetworks6
WhatisaMassiveMIMOsolution?
February2023
Thepotentialislargewhenthereceivedsignalqualityishigh,andthebeamscarryingthe
datastreamsaredesignednottointerferewitheachother.Thepotentialdiminisheswhen
themutualinterferencebetweenstreamsincreases.MIMOworksinbothULandDL,butfor
simplicity,thedescriptionbelowwillbebasedontheDL.Thedetailsofhowtheseworkare
explainedindetailin[2,Ch.4,6,13].
Single-userMIMO(SU-MIMO)istheabilitytotransmitoneormultipledatastreams,also
calledlayers,fromonetransmittingarraytoasingleuser.SU-MIMOcantherebyincrease
thethroughputforthatuserandincreasethecapacityofthenetwork.Thenumberoflayers
thatcanbesupported,calledtherank,dependsontheradiochannelandtheminimum
numberofantennasoneachside.TodistinguishbetweenDLlayers,aUEmusthaveatleast
asmanyreceiverantennasastherearelayers.
SU-MIMOcanbeachievedbysendingdifferentlayersondifferentpolarizationsinthesame
direction.SU-MIMOcanalsobeachievedinamulti-pathenvironment,wherethereare
manyradiopropagationpathsofsimilarstrengthbetweentheMassiveMIMOradioandthe
UE,bysendingdifferentlayersondifferentpropagationpaths,asshowninthebottomleft
quadrantofFigure1.
Inmulti-userMIMO(MU-MIMO),whichisshowninthebottomrightquadrantofFigure1,
differentlayersinseparatebeamsaretransmittedtodifferentusersusingthesametime
andfrequencyresource,therebyincreasingthenetworkcapacity.TouseMU-MIMO,the
systemneedstofindtwoormoreusersthatneedtotransmitorreceivedataatthevery
sametime.Also,forefficientMU-MIMO,theinterferencebetweentheusersshouldbekept
low.Thiscanbeachievedbyusinggeneralizedbeamformingwithnullformingsuchthat
whenalayerissenttooneuser,nullsareformedinthedirectionsoftheothersimultaneous
users.
TheachievablecapacitygainsfromMU-MIMOdependonreceivingeachlayerwithgood
signal-to-interference-and-noise-ratio(SINR).AswithSU-MIMO,thetotalDLpoweris
sharedbetweenthedifferentlayers,andthereforethepower(andthusSINR)foreachuser
isreducedasthenumberofsimultaneousMU-MIMOusersincreases.Also,asthenumberof
usersgrows,theSINRwillfurtherdeteriorateduetomutualinterferencebetweentheusers.
Therefore,thenetworkcapacitytypicallyimprovesasthenumberofMIMOlayersincreases
toapointatwhichpowersharingandinterferencebetweenusersresultindiminishing
gainsandeventuallyalsolosses.
ItshouldbenotedthatthepracticalbenefitsofmanylayersinMU-MIMOarelimitedbythe
factthat,intoday'srealnetworks,evenwithahighnumberofsimultaneouslyconnected
users,theretendnottobemanyuserswhowanttoreceivedatasimultaneously.Thisisdue
tothebursty(chatty)natureofdatatransmissiontomostusers.SincetheMassiveMIMO
andthetransportnetworkmustbedimensionedforthemaximumnumberoflayers,the
CSPneedstoconsiderhowmanylayersarerequiredintheirnetworks.Intypicalmobile
broadband(MBB)deploymentswiththecurrent64T64RMassiveMIMOvariants,thevast
majorityoftheDLandULcapacitygainscanbeachievedwithupto8layers.Forother
servicesthanMBB,e.g.fixedwirelessaccess(FWA),thereisuseformorelayerscompared
toMBB.EightlayersarehoweverusuallysufficientalsoforFWA.
MassiveMIMOfor5Gnetworks7
WhatisaMassiveMIMOsolution?
February2023
AcquiringchannelknowledgeforMassiveMIMO
Knowledgeoftheradiochannelsbetweentheantennasoftheuserandthoseofthe
basestationisakeyenablerforbeamformingandMIMO,bothforULreceptionandDL
transmission.ThisallowstheMassiveMIMOtoadaptthenumberoflayersanddetermine
howtobeamformthem.
ForULreceptionofdatasignals,channelestimatescanbedeterminedfromknownsignals
receivedontheULtransmissions.Channelestimatescanbeusedtodeterminehowto
combinethesignalsreceivedtoimprovethedesiredsignalpowerandmitigateinterfering
signals,eitherfromothercellsorwithinthesamecell.
DLtransmission,ontheotherhand,istypicallymorechallengingthanULreceptionbecause
channelknowledgeneedstobeavailablebeforetransmission.Whereasbasicbeamforming
hasrelativelylowrequirementsonthenecessarychannelknowledge,generalized
beamforminghashigherrequirementsasmoredetailsaboutthemulti-pathpropagation
areneeded.Furthermore,mitigatinginterferencebyusingnull-formingforMU-MIMOis
evenmorechallenging,sincemoredetailsofthechannelstypicallyneedtobecharacterized
withhighgranularityandaccuracy.TherearetwobasicwaysofacquiringDLchannel
knowledge:UEfeedbackandULchannelestimation.
ToacquireDLchannelknowledgebasedonUEfeedback,thebasestationtransmitsknown
signalsintheDLthatUEscanuseforchannelestimation.Relevantchannelinformationis
thenextractedfromthechannelestimatesandfedbacktothebasestation.
WhattypeofDLchannelknowledgecanbeacquiredbasedonULchannelestimation,also
referredtoasULsounding,dependonwhethertimedivisionduplex(TDD)orfrequency
divisionduplex(FDD)isused.ForTDD,thesamefrequencyisusedforbothULandDL
transmission.Sincetheradiochannelisreciprocal(thesameinULandDL),detailedshort-
termchannelestimatesfromULtransmissionofknownsignalscanbeusedtodetermine
theDLtransmissionbeams.Thisisreferredtoasreciprocity-basedbeamforming.Forfull
channelestimation,signalsshouldbesentfromeachUEantennaandacrossallfrequencies.
ForFDD,wheredifferentfrequenciesareusedforULandDL,thechannelisnotfully
reciprocal.Longer-termchannelknowledge(suchasdominantdirections)can,however,be
obtainedbysuitableaveragingofULchannelestimatestatistics.
ThesuitablechannelknowledgeschemetousedependsonULcoverageandUE
capabilities.IncaseswhereULcoverageislimiting,UEfeedbackoffersamorerobust
operation,whereasfullULchannelestimationisapplicableinscenarioswithgood
coverage.Inshort,bothreciprocityandUEfeedback-basedbeamformingareneeded.
Antennaarraystructure
Thepurposeofusingarectangularantennaarray,asshowninsectionAofFigure2,isto
enablehigh-gainbeamsandmakeitpossibletosteerthosebeamsoverarangeofanglesin
horizontalandverticaldirections.Thegainisachieved,inbothULandDL,byconstructively
combiningsignalsfromseveralantennaelements.Typically,themoreantennaelements
thereare,thehigherthegain.Steerabilityisachievedbyindividuallycontrollingthe
amplitudeandphaseofsmallerpartsoftheantennaarray.Thisisusuallydonebydividing
MassiveMIMOfor5Gnetworks8
WhatisaMassiveMIMOsolution?
February2023
theantennaarrayintosocalledsub-arrays(groupsofnon-overlappingelementspairs),as
showninsectionCofFigure2andbyapplyingtwodedicatedradiochainspersub-array
(oneperpolarization)toenablecontrol,asshowninsectionD.Inthisway,itispossibleto
controlthedirectionandotherpropertiesofthecreatedbeam.
A.B.C.D.
Figure2:Atypicalantennaarray(A)ismadeupofrowsandcolumnsofindividualdual-polarized
antennaelementpairs(B).Antennaarrayscanbedividedintosub-arrays(C),witheachsub-array
(D)connectedtotworadiochains,normallyoneperpolarization.
Toseehowanantennaarraycreatessteerablehigh-gainbeams,westartwithan
antennaarrayofaspecificsize,whichisthendividedintosub-arraysofdifferentsizes.For
illustrativepurposes,wedescribeonlyonedimension.Thesameprinciplesdo,however,
applytobothverticalandhorizontaldimensions.
Thearraygainisreferredtoasthegainachievedwhenallsubarraysignalsareadded
constructively(inphase).Thesizeofthearraygain,relativetothegainofonesub-array,
dependsonthenumberofsub-arrays–forexample,twosub-arraysgiveanarraygainof2
(i.e.3dB).Bychangingthephasesofthesub-arraysignalsinacertainway,thisgaincanbe
achievedinanydirection,asshowninsectionAofFigure3.
Eachsub-arrayhasacertainradiationpatterndescribingthegainindifferentdirections.
Thegainandbeamwidthdependonthesizeofthesub-arrayandthepropertiesofthe
individualantennaelements.Thereisatrade-offbetweensub-arraygainandbeam
width–thelargerthesub-array,thehigherthegainandthenarrowerthebeamwidth,as
illustratedinsectionBofFigure3.
Thetotalantennagainistheproductofthearraygainandthesub-arraygain,asshown
insectionCofFigure3.Thetotalnumberofelementsdeterminesthemaximumgainand
thesub-arraypartitioningallowsthesteeringofhigh-gainbeamsovertherangeofangles.
Moreover,thesub-arrayradiationpatterndeterminestheenvelopeofthenarrowbeams
(thedashedshapeinsectionCofFigure3).Thishasanimplicationonhowtochoosean
antennaarraystructureinarealdeploymentscenariowithspecificcoveragerequirements.
Sinceeachsub-arrayisnormallyconnectedtotworadiochainsandeachradiochain
isassociatedwithacostintermsofadditionalcomponents,itisimportanttoconsider
MassiveMIMOfor5Gnetworks9
WhatisaMassiveMIMOsolution?
February2023
theperformancebenefitsofadditionalsteerabilitywhenchoosingacost-efficientarray
structure.
A.B.C.
6dB
4α4α
6dB
3dB
2α2α
3dB
6dB
αα
0dB
ArraygainxSub-arraygain=Totalantennagain
Figure3:Anarrayofsub-arrayssupportinghightotalantennagainandsteerability
MassiveMIMOfor5Gnetworks10
Deploymentscenarios
February2023
Deployment
scenarios
DeterminingwhatkindofMassiveMIMOconfigurationismostappropriateandcost-
effectiveforaparticulardeploymentscenariorequiresamixofknowledgeaboutthe
scenario,possiblesiteconstraints,andavailableMassiveMIMOfeatures,particularlythe
needforverticalsteerabilityofbeams,theapplicabilityofreciprocity-basedbeamforming
andthegainfromMU-MIMO.Itshouldbenotedthathorizontalbeamformingisavery
effectivefeaturethatprovideslargegainsinallscenariossincetheusersaregenerally
spreadinthehorizontaldimension.Therefore,alargenumberofcolumnsisbeneficialinall
scenarios.
WehavechosenthreetypicalusecasestoillustratedifferentaspectsofMassive
MIMOdeployment:rural/suburban,urbanlow-rise,anddenseurbanhigh-rise.More
comprehensiveandpracticallyusefulrecommendationscanbefoundin[3].Thescenarios,
includingrelevantcharacteristics,suitableMassiveMIMOconfigurations,andperformance
potentialaredepictedinFigure4.Moreelaborateevaluationsoftheperformance
achievablewithMassiveMIMOareavailableinreference[2]and[3].
MassiveMIMOfor5Gnetworks11
Deploymentscenarios
February2023
2x1sub-array-64T64RRelativecapacity
Denseurbanhigh-rise
ISD-200-500m
A.
2T16T32T64T
MU-MIMOSU-MIMO
4x1sub-array-32T32RRelativecapacity
Urbanlow-rise
ISD-500-1000m
B.
2T16T32T64T
MU-MIMOSU-MIMO
8x1sub-array-16T16RRelativecapacity
Table1:Comparisonofthesimplestregular5GdevicewithSurburbanthesimplestandrural
andthemostadvancedRedCapdeviceISD>1000m
C.
2T16T32T64T
MU-MIMOSU-MIMO
Figure4:SuitableMassiveMIMOconfigurations,schematicMU-MIMOandSU-MIMOusage
ranges,andtypicalcapacitygainsindifferentdeploymentscenarios
Deploymentscenario#1:Denseurbanhigh-rise
AsdepictedinsectionAofFigure4,thedenseurbanhigh-risescenarioischaracterized
byhigh-risebuildings,shortinter-site-distances(ISDs)of200-500m,largetrafficvolume,
andhighsubscriberdensitywithsignificantuserspreadintheverticaldimension.Themain
networkevolutiondriverhasincreasedcapacityorequivalentlyhighend-userthroughput
foragiventrafficload.
Forconventionalnon-beamformedsystemssuchas2T2R,theverticalspreadofusers
incombinationwiththesmallISDcreatesasituationwheremanyusersareoutsidethe
verticalmainbeamofthenearestbasestation.Togetherwiththehighsitedensity,this
leadstoasituationwherethesignalsfrominterferingbasestationsarestrong,andsevere
interferenceproblemsmayoccur.
DesiredMassiveMIMOcharacteristicsinthedenseurbanhigh-risescenarioincludean
antennaarealargeenoughtoensuresufficientcoverage(ULcell-edgedatarate).Further,
theverticalcoveragerangeneedstobelargeenoughtocovertheverticalspreadofusers.
Thiscallsforsmallsub-arrays,whichhaveawidebeamintheverticaldirection.Partitioning
theantennaintosmallverticalsub-arraysresultsinhigh-gainbeamsthatcanbesteered
overalargerangeofanglesandeffectivelyaddressestheinterferenceproblemsseenwith
conventionalsystems.TheMassiveMIMOradioneedstohaveasufficientnumberofradio
chainstosupporttherelativelylargenumberofsub-arrays.Thegoodcoverageandlarge
spreadofusersmeanthatthepotentialforreciprocity-basedbeamformingandMU-MIMO
witharelativelylargenumberofmultiplexedusersishigh,andtheMassiveMIMOradio
MassiveMIMOfor5Gnetworks12
Deploymentscenarios
February2023
shouldsupportthesetechniques.Agoodtrade-offbetweencomplexityandperformance
couldbeachievedwith64radiochainscontrollingsmallsub-arrays.
Deploymentscenario#2:Urbanlow-rise
Theurbanlow-risescenarioillustratedinsectionBofFigure4representsmanyofthelarger
citiesaroundtheworld,includingtheoutskirtsofmanyhigh-risecities.Basestationsare
typicallydeployedonrooftops,withinter-sitedistancesofafewhundredmeters.Compared
tothedenseurbanhigh-risescenario,trafficperareaunitislower.Thereisgenerallya
mixofbuildingtypes,whichcreatesmultipathpropagationbetweentheMassiveMIMO
radioandtheUE.MaximizingtheantennaareaisimportantforimprovingtheULcell-edge
datarates,especiallyforhigherfrequencybandsemployingTDD.DuetolargerISDsand
decreasedverticalspreadofusers(lowerbuildings),theverticalcoveragerangecanbe
decreasedcomparedtodenseurbanhigh-rises;hence,largerverticalsub-arrayscanbe
usedandthereislessgainfromverticalbeamforming.Usinglargersub-arraysforagiven
antennaareameansthatfewerradiochainsarerequired.Reciprocity-basedbeamforming
schemeswillworkformostusers,buttherewillbeuserswithpoorcoveragethatneedto
relyontechniquessuchasfeedback-basedbeamforming.MU-MIMOisalsoappropriate
athighloadsduetothemulti-pathpropagationenvironment,goodlinkqualities,andUE
pairingopportunities.Agoodtrade-offbetweencomplexityandperformanceisaMassive
MIMOradiowith16to32radiochains.
Deploymentscenario#3:Rural/suburban
Ruralorsuburbanmacroscenarios,asdepictedinsectionCofFigure4,arecharacterized
byrooftoportower-mountedbasestationswithinter-sitedistancesrangingfromone
toseveralkilometers,lowormediumpopulationdensityandverysmallverticaluser
distribution.ThisscenariocallsforaMassiveMIMOradiowithalargeantennaareaand
theabilitytosupporthorizontalbeamforming.Verticalbeamforming,however,doesnot
provideanysignificantgainsastheverticaluserspreadislow.Therefore,largevertical
sub-arrayswithsmallverticalcoverageareasarepossible.Reciprocity-basedbeamforming
issupportedforasmallerfractionofusersthanintheotherscenarios,andMU-MIMOgains
aremorelimited.Agoodtrade-offbetweencomplexityandperformanceisaMassiveMIMO
radiowith8to16radiochains.
MassiveMIMOfor5Gnetworks13
EvolutionofMassiveMIMO
February2023
Evolutionof
MassiveMIMO
ThebriefexplanationofMassiveMIMOabovereflectsthesolutionsinusetodate(2022-
Q4).TheevolutionofMassiveMIMOisveryrapid,andseveraltracksarebeinginvestigated
toachievehigherperformance.Afewexamplesincludetheuseofhighernumbersofradio
chains,largerarraypanels,theuseofnewandhigherfrequencies,andtheuseofmultiple
transmissionpoints(multi-TRP).Inadditiontoadvancementsintechnologiesspecific
toMassiveMIMO,theuseofinterworkingbetweenMassiveMIMOandconventional
radiosonotherfrequencybandsaddadditionalcapacitybeyondthesumofthetwo,
respectively.Otherdevelopingtechnologies,e.g.artificialintelligenceandmachine
learning(AI/ML)willalsobeappliedinMassiveMIMOtoimproveperformance.Yetother
technologydevelopments,relatingtoforexampleenergyperformance,costefficiency,
andsitedeployment,arecomingintousetomakeMassiveMIMOahighlycompetitiveand
commerciallyviableoptionformassdeploymentinalargevarietyofscenarios.
MassiveMIMOisalsousedtosupportagrowingnumberofservicesinadditiontoMBB.
TodayMassiveMIMOisalreadyusedforFWA,IoTandnewindustriesandinthenear
futurealsoXRservices.Withthedevelopmentofprivatenetworks,thenumberofservices
supportedisexpectedtogrowveryfast.
MassiveMIMOfor5Gnetworks14
Conclusion
February2023
Conclusion
RecenttechnologydevelopmentshavemadeMassiveMIMO(advancedantennasystems)
apreferredoptionforlarge-scaledeploymentsin4Gand5Gmobilenetworks.Massive
MIMOenablesstate-of-the-artbeamformingandMIMOtechniquesthatarepowerful
toolsforimprovingend-userexperience,capacity,andcoverage.Asaresult,MassiveMIMO
significantlyenhancesnetworkperformanceinbothuplinkanddownlink.
TheMassive-MIMOsolutiontoolboxisversatileandselectingasuitableMassiveMIMO
(2x)solutiondependsonaspectssuchasdeploymentenvironment,trafficloadvariations
andease-of-deployment.MassiveMIMOproductsprovidesignificantbenefitsacrossa
verywiderangeofdeploymentscenarios,makingitpossibleformobilenetworkoperators
toenjoythebenefitsofcost-efficientMassiveMIMOacrosstheirnetworks.MassiveMIMO
solutionshavealreadyproveninvaluableinmany5Gdeployments,andtheirimportance
willlikelytoincreaseevenfurtherinfuturenetworkdeployments.
MassiveMIMOfor5Gnetworks15
Keyterms
February2023
Keyterms
MassiveMIMOradio
Hardwareunitthatcomprisesanantennaarray,radiochains
andpartsofthebaseband,alltightlyintegratedtofacilitateMassiveMIMOfeatures
MassiveMIMOfeature
Amulti-antennafeature(suchasbeamformingorMIMO)thatcanbeexecutedinthe
MassiveMIMOradio,inthebasebandunitorboth
MassiveMIMO
MassiveMIMOradio+MassiveMIMOfeatures
MassiveMIMOfor5Gnetworks16
References
February2023
References
1.EricssonMobilityReport,June2022availableat
/49d3a0/assets/local/reports-papers/mobility-report/
documents/2022/ericsson-mobility-report-june-2022.pdf
2.Asplund,etal,“AdvancedAntennaSystemsfor5GNetworkDeployments:Bridging
theGapBetweenTheoryandPractice”,1stEdition,Elsevier2020,ISBN:978-0-12-
820046-9,AdvancedAntennaSystemsfor5GNetworkDeployments-1stEdition
()
3.Asplundetal,“TheMassiveMIMOhandbook”,Ericsson2022
/Massive-MIMO-handbook-extended-version-download.
html
MassiveMIMOfor5Gnetworks17
Furtherreading
February2023
Furtherreading
1.EricssonTechnologyReview,Designingforthefuture:the5GNRphysicallayer,
availableat:/en/ericsson-technology-review/archive/2017/
designing-for-the-future-the-5g-nr-physical-layer
2.EricssonTechnologyReview,EvolvingLTEtofitthe5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家用切肉机市场发展现状调查及供需格局分析预测报告
- 2024年度典当行房屋抵押流程合规审查合同
- 2024年度建筑工地脚手架维护合同
- 吸盘碗市场发展现状调查及供需格局分析预测报告
- 织物柔软剂市场发展预测和趋势分析
- 《水泥窑尾高温气体分析装置》
- 2024年度日料店租赁合同书
- 游标卡尺市场发展现状调查及供需格局分析预测报告
- 电路板市场需求与消费特点分析
- 2024年度林产品购销合同
- 风险事件分类清单
- 2023年03月2023年浙江万里学院招考聘用企业编制工作人员30人笔试题库含答案解析
- 胸痛时间管理表
- 110KVGIS隔离开关安装说明书
- 超声引导下腰椎部位穿刺
- 口语交际我们与环境教案(集合5篇)
- 普通高校本科招生专业选考科目要求指引(通用版)
- 《人体解剖学》期中测试
- 多学科围手术期气道管理共识解读
- GB/T 3078-2008优质结构钢冷拉钢材
- GB/T 15076.1-2017钽铌化学分析方法第1部分:铌中钽量的测定电感耦合等离子体原子发射光谱法
评论
0/150
提交评论