新教材“充要条件”教学设计_第1页
新教材“充要条件”教学设计_第2页
新教材“充要条件”教学设计_第3页
新教材“充要条件”教学设计_第4页
新教材“充要条件”教学设计_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、教学目标(一)知识教学点通过这节课的教学,要求学生正确理解充分条件、必要条件和充要条件三个概念,并能在论证中正确地运用.(二)能力训练点充要条件是重要的数学概念.它主要讨论命题的条件和结论的关系.通过对充分条件、必要条件和充要条件的概念的理解和运用,培养学生分析、判断和归纳的逻辑思维能力.(三)学科渗透点运用充分、必要、充要条件以及轨迹的纯粹性、完备性等知识,说明曲线与方程在坐标系建立的条件下是怎样既对应又统一的,怎样互相转化的,在进一步理解曲线的方程、方程的曲线的概念及其相互关系的过程中进行辩证唯物主义思想教育.二、教材分析1.重点:充分条件、必要条件和充要条件的概念.(解决方法:对这三个概念分别先从实际问题引起概念,再详细讲述概念,最后再应用概念进行论证.)2.难点:充分条件、必要条件和充要条件三个概念在论证中的正确运用.(解决方法:先要求学生分清什么条件是什么条件的充分条件或必要条件,同时要注意一些常见命题的正确性.)3.疑点:证明有关充要条件的命题.(解决方法:先要学生分清充分性、必要性,再进行证明,要加强这方面的训练.)三、活动设计1.活动:提问、讲授、引导练习.2.教具:小黑板.四、教学过程(一)复习引入教师概述一下命题的四种形式,并指出原命题与逆否命题等价,逆命题与否命题等价.而命题的四种形式与条件的充分性和必要性有密切联系,所以本节课着重讨论充分条件、必要条件和充要条件三个概念.课题是“充要条件”.1

教材分析充要条件是中学数学中最重要的数学概念之一,它主要讨论了命题的条件与结论之间的逻辑关系,目的是为今后的数学学习特别是数学推理的学习打下根底。在旧教材中,这节内容安排在《解析几何》第二章“圆锥曲线”的第三节讲授,而在新教材中,这节内容被安排在数学第一册〔上〕第一章中“简易逻辑”的第三节。除了教学位置的前移之外,新教材中与充要条件相关联的知识体系也作了相应的扩充。在“充要条件”这节内容前,还安排了“逻辑联结词”和“四种命题”这二节内容作为必要的知识铺垫,特别是“逻辑联结词”这局部内容是第一次进入中学数学教材,安排在充要条件之前讲授,既可以使学生丰富并深化对命题的理解,也便于老师讲透充要条件这一根本数学概念。从学生学习的角度看,与旧教材相比,教学时间的前置,造成学生在学习充要条件这一概念时的知识储藏不够丰富,逻辑思维能力的训练不够充分,这也为教师的教学带来一定的困难.因此,新教材在第一章的小结与复习中,把学生的学习要求规定为“初步掌握充要条件”〔注意:新教学大纲的教学目标是“掌握充要条件的意义”〕,这是比拟切合教学实际的.由此可见,教师在充要条件这一内容的新授教学时,不可拔高要求追求一步到位,而要在今后的教学中滚动式逐步深化,使之与学生的知识结构同步开展完善1.推断符号前面我们讨论了“假设p那么q”形式的命题,其中有的命题为真,有的命题为假.“假设p那么q”为真,是指由p经过推理可以得出q,也就是说,如果p成立,那么q一定成立,记作p(q,或者qp;如果由p推不出q,命题为假,记作p(q,简单地说,“假设p那么q”为真,记作p=>q〔或q<=p〕;“假设p那么q”为假,记作p≠>q〔或q<≠p〕.符号“=>”叫做推断符号.例如(1)是一个真命题,可写成:x>0=>x2>0;又如(2)是一个真命题,可写成:两三角形全等=>两三角形面积相等.又如(3)是一个假命题,可写成|x|=|y|≠>x=y。注:①“p=>q”表示“假设p那么q”为真;也表示“p蕴含q”.②“p=>q”也可写为“q<=p”,有时也用“p→q”.练习:课本第35页练习:12.1

复习旧知,引入新课﹝ppt1﹞1.命题:可以判断真假的语句,可写成:假设p那么q.2.四种命题及相互关系:3.如果命题“假设p那么q”为真,那么记作〔或〕。4.如果命题“假设p那么q”为假,那么记作pq。﹝ppt2﹞1.例1

判断以下命题的真假,并研究其逆命题的真假.〔1〕假设,那么。〔2〕有两角相等的三角形是等腰三角形.〔3〕的解集为R,那么。〔4〕假设,那么。答:〔1〕p

〔2〕〔3〕

〔4〕q,qp2.在原命题中研究前者对后者的制约程度:真命题〔1〕、〔2〕中,p足以导致q,也就是说条件p充分了.假命题〔3〕、〔4〕中,p缺乏以导致q,也就是说条件p不充分.3.在逆命题中研究后者对前者的依赖程度:真命题〔2〕〔3〕中,p是q成立所必须具备的前提.假命题〔l〕〔4〕中,p不是q成立所必须具备的前提.建构主义的学习理论认为,学习不是一个被动的吸收过程,而是一个以已有的知识和经验为根底的主动的建构过程,因此,从具体问题出发来引出数学概念更符合学生的认知规律.例1在这里起到了承上启下的作用,既复习了前面所学知识,又找准了学生知识结构上的生长点,通过研究四个命题中前者对后者的制约程度,可以得出建立在学生原有知识水平上的“充分”这个感性化的词汇,通过研究后者对前者的依赖程度,可以得出“必须具备”这个感性化的词汇,这就使后面“充分条件”“必要条件”这两个数学概念的引入顺理成章,水到渠成.2.2

阐述定义,理解内涵﹝ppt3﹞1.定义:4.四种条件如果,那么说p是q的充分条件.如果,那么说p是q的必要条件.如果既有,又有,就记作,那么说p是q的充要条件.2.从集合角度理解:①,相当于,即或即:要使成立,只要就足够了——有它就行.②,相当于,即或即:为使成立,必须要使——缺它不行.等价于。③,相当于,即即:互为充要的两个条件刻划的是——同一事物.有了前面例1作铺垫,从顾名思义的角度,学生可以很自然地接受并初步理解“充分条件”、“必要条件”、“充要条件”这三个概念.而从集合角度对这三个概念分别加以剖析,那么可以使学生更准确深入地理解其中的内涵.在这里采用先对“充分条件”、“必要条件”分别定义的教学方案,可防止难点过分集中,使学生将注意力集中于对概念内涵的理解上.[ppt4]1.回到例1〔1〕判断前者是后者的什么条件.〔2〕判断后者是前者的什么条件.答〔1〕①充分不必要②充要③必要不充分④既不充分也不必要〔2〕①必要不充分②充要③充分不必要④既不充分也不必要2.简化定义:如果,那么说q是q的充分条件,q是p的必要条件.当学生的视线再回到例1时,他们的认识已螺旋式上升,到达了一个新的境界,这样,例1又可以起到稳固学生认识的作用.此时再给出课本上的简化定义,并指出在判断充要关系时必须先分清条件与结论,学生理解起来困难就小得多了.2.3

练习稳固,深化认识[ppt5]1.例2

判断以下问题中,p是q成立的什么条件?pq〔1〕〔2〕

〔3〕

或解

〔1〕〔2〕〔3〕p2.判别步骤〔1〕认清条件和结论.〔2〕考察和的真假.3.判别技巧〔1〕可先简化命题.〔2〕否认一个命题只要举出一个反例即可.〔3〕可将命题转化为等价的逆否命题后再判断.学生在解决例2的过程中,可以深化对充要条件概念的认识,进而概括出解决此类问题的一般解题策略.2.4

结合生活,丰富感知[ppt6]例3

探讨以下生活中名言名句的充要关系.〔1〕水滴石穿〔2〕骄兵必败〔3〕有志者事竟成〔4〕头发长,见识短〔5〕名师出高徒〔6〕放下屠刀,立地成佛〔7〕兔子尾巴长不了〔8〕不到长城非好汉〔9〕春回大地,万物复苏〔l〕海内存知己〔l〕蜡炬成灰泪始干〔12〕玉不琢,不成器充要条件既是一个数学概念也是一个逻辑概念,它与人们日常生活中的推理判断密切相关,设计例3让学生从数学的角度重新审视生活中的名言名句,表达了数学作为人类文化结晶的特点,也使这节数学课融合了浓厚的文化气息.教学中,我逐一展示名言名句,让学生探讨其中的充要关系,此时课堂学习的气氛到达了高潮,学生一改以往不肯轻易发言的习惯,踊跃发表自己的观点.当然,生活语言不可能象数学命题一样准确,因此学生不同观点的碰撞在所难免,作为教师,只要学生的推断能在某种前提或某个角度下符合情理,就应该肯定,在这里答案应该是开放的,不同的观点应允许共存,关键是只要学生能“学会数学地思维”.2.5

小结作业[ppt7]小结:略作业:1.P36练习l、2.2.写出生活中有四种关系的名言名句各1句.3.名句探微——名言名句充要关系之剖析.〔500字左右〕受课堂教学时间所限,例3这个教学设计不可能也不必花过多的时间,启动学生的数学思维后,我还设计了作业2.3这两个开放性的文字数学作业,从而将课堂上刚刚展开的思维涟漪扩散到了课外.3情况教学后记本教学设计的例3和作业3,不同于通常的数学习题和数学问题,具有浓郁的文化气息,是点缀的花边还是点睛的妙笔,孤立地看,也许答案不一,但立足整个数学教学的全局,立足学生数学素质的培养,我觉得还是恰到好处,余味无穷.从收上来的学生作业中,我看到了学生一种前所未有的学习热情,学生写出的名言琳琅满目,丰富多彩,名句探微更是精彩纷呈.一些学生写道:“一些平时以为天经地义的名言名句,从数学的角度进行深入的剖析,却发现未必成立.”“这次作业,使我学会了质疑,学会了从正反两个方面来看待一句话一个问题”。“这次作业使我认识到数学无处不在,学习数学可以养成严谨、求实的思维习惯.”我想数学知识毕竟

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论