版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
资料整理资料整理资料整理→➌题型突破←→➍专题精练←题型一变量与变量之间的关系1.在行进路程s、速度v和时间t的相关计算中,若保持行驶的路程不变,则下列说法正确的是()A.变量是速度v B.变量是时间t C.速度v和时间t都是变量 D.速度v、时间t、路程s都是常量【分析】利用常量和变量的定义解答即可.【解析】在行进路程s、速度v和时间t的相关计算中,若保持行驶的路程不变,则速度v和时间t是变量,行进路程s是常量,故选:C.2.在行进路程s、速度v和时间t的相关计算中,若保持行驶的路程不变,则下列说法正确的是()A.变量是速度v B.变量是时间t C.速度v和时间t都是变量 D.速度v、时间t、路程s都是常量【分析】利用常量和变量的定义解答即可.【解析】在行进路程s、速度v和时间t的相关计算中,若保持行驶的路程不变,则速度v和时间t是变量,行进路程s是常量,故选:C.3.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):温度/℃﹣20﹣100102030声速/m/s318324330336342348下列说法错误的是()A.在这个变化中,自变量是温度,因变量是声速 B.温度越高,声速越快 C.当空气温度为20℃时,声音5s可以传播1740m D.当温度每升高10℃,声速增加6m/s【分析】根据自变量、因变量的含义,以及声音在空气中传播的速度与空气温度关系逐一判断即可.【解析】∵在这个变化中,自变量是温度,因变量是声速,∴选项A正确;∵根据数据表,可得温度越高,声速越快,∴选项B正确;∵342×5=1710(m),∴当空气温度为20℃时,声音5s可以传播1710m,∴选项C错误;∵324﹣318=6(m/s),330﹣324=6(m/s),336﹣330=6(m/s),342﹣336=6(m/s),348﹣342=6(m/s),∴当温度每升高10℃,声速增加6m/s,∴选项D正确.故选:C.4.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一变量关系中,因变量是.【分析】因为骆驼的体温随时间的变化而变化,符合“对于一个变化过程中的两个量x和y,对于每一个x的值,y都有唯一的值和它相对应”的函数定义,自变量是时间,因变量是体温.【解析】∵骆驼的体温随时间的变化而变化,∴自变量是时间,因变量是体温,故答案为:体温5.小邢到单位附近的加油站加油,下图所示是他所用的加油机上的数据显示牌,则数据中的变量是.【分析】根据加油机上的数据显示牌找出数据中的变量即可.【解析】根据题意得:数据中的常量为:单价,变量为:金额和数量,故答案为:金额和数量6.按如图方式摆放餐桌和椅子.用x来表示餐桌的张数,用y来表示可坐人数.(1)题中有几个变量?(2)你能写出两个变量之间的关系吗?【分析】由图形可知,第一张餐桌上可以摆放6把椅子,进一步观察发现:多一张餐桌,多放4把椅子.x张餐桌共有6+4(x﹣1)=4x+2.【解析】(1)观察图形:x=1时,y=6,x=2时,y=10;x=3时,y=14;…可见每增加一张桌子,便增加4个座位,因此x张餐桌共有6+4(x﹣1)=4x+2个座位.故可坐人数y=4x+2,故答案为:有2个变量;(2)能,由(1)分析可得:函数关系式可以为y=4x+2.7.有一个容积为350L的水池,现用10台抽水机从蓄满水的池中同时抽水,已知每台抽水机每小时可抽水10L.(1)抽水1小时后,池中还有水;(2)在这一变化过程中哪些是变量,哪些是常量?(3)几小时后才能把满池水抽干?【分析】(1)用容积总量减去10台抽水机1小时抽水的量即可;(2)根据函数的意义可知:变量是改变的量,常量是不变的量,据此即可确定变量与常量;(3)用水池总量除以10小时10台抽水机抽水的总量,即可得出答案.【解析】(1)抽水1小时后,池中还有水:350﹣10×10=250L;故答案为:250L;(2)在这一变化过程中时间、抽水机是常量,池中的水是变量;(3)根据题意得:350÷(10×10)=3.5(小时),答:3.5小时后才能把满池水抽干.8.小明家距离学校8千米,今天早晨,小明骑车上学图中,自行车出现故障,恰好路边有便民服务点,几分钟后车修好了,他以更快的速度匀速骑车到校.我们根据小明的这段经历画了一幅图象(如图),该图描绘了小明行驶的路程(千米)与他所用的时间(分钟)之间的关系.请根据图象,解答下列问题:(1)小明行了多少千米时,自行车出现故障?修车用了几分钟?(2)小明从早晨出发直到到达学校共用了多少分钟?(3)小明修车前、后的行驶速度分别是多少?(4)如果自行车未出现故障,小明一直用修车前的速度行驶,那么他比实际情况早到或晚到多少分钟?【分析】(1)根据自行车出现故障后路程s不变解答,修车的时间等于路程不变的时间;(2)路程等于8千米时的时间即为用的时间;(3)利用速度=路程÷时间分别列式计算即可得解;(4)求出未出故障需用的时间,然后用实际情况的时间减正常行驶的时间即可进行判断.【解析】(1)由图可知,小明行了3千米时,自行车出现故障,修车用了15﹣10=5(分钟);(2)小明共用了30分钟到学校;(3)修车前速度:3÷10=0.3千米/分,修车后速度:5÷15=1(4)8÷330−80故他比实际情况早到1039.如图所示,小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况.(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?(2)他到达离家最远的地方是什么时间?离家多远?(3)10时到12时他行驶了多少千米?(4)他可能在哪段时间内休息,并吃午餐?(5)他由离家最远的地方返回时的平均速度是多少?【分析】(1)根据函数图象,可得自变量、因变量;(2)根据函数图象的纵坐标,可得答案;(3)根据函数图象的横坐标、纵坐标,可得答案;(4)根据函数图象的横坐标,可得函数值,根据函数值相减,可得答案;(5)根据函数图象的纵坐标,可得距离,根据函数图象的横坐标,可得时间,根据路程除以时间,可得答案.【解析】(1)图象表示了离家的距离与时间这两个变量之间的关系.其中时间是自变量,离家的距离是因变量;(2)根据图象可知,他到达离家最远的地方是在12时,离家30千米;(3)根据图象可知,30﹣15=15(千米).故:10时到12时他行驶了15千米;(4)根据图象可知,他可能在10时30分到11时或12时到13时间内休息,并吃午餐;(5)根据图象可知,30÷(15﹣13)=15(千米/时).故:他由离家最远的地方返回时的平均速度是15千米/时.题型二用表格法表示函数10.某地区用电量与应缴电费之间的关系如下表:则下列叙述错误的是()用电量(千瓦•时)1234…应缴电费(元)0.551.101.652.20…A.用电量每增加1千瓦•时,电费增加0.55元 B.若用电量为8千瓦•时,则应缴电费4.4元 C.若应缴电费为2.75元,则用电量为6千瓦•时 D.应缴电费随用电量的增加而增加【分析】根据用电量与应缴电费之间成正比例关系,即可得出结论.【解析】A.用电量每增加1千瓦•时,电费增加0.55元,故本选项正确;B.若用电量为8千瓦•时,则应缴电费8×0.55=4.4元,故本选项正确;C.若所缴电费为2.75元,则用电量为2.75÷0.55=5千瓦•时,故本选项错误;D.所缴电费随用电量的增加而增加,故本选项正确;故选:C.11.声音在空气中传播的速度y(m/s)(简称声速)与气温x(℃)的关系如下表所示:气温x/℃05101520…声速y/(m/s)331334337340343…照此规律可以发现,当气温x为℃时,声速y达到352m/s.【分析】观察图表数据,气温每升高5℃,音速增加3,然后写出x的表达式,把音速y=352代入函数解析式,求得相应的x的值即可.【解析】根据题意得,y=0.6x+331,当y=352时,352=0.6x+331,解得x=35.即当声音在空气中的传播速度为352米/秒,气温是35℃,故答案为35.12.一个学习小组利用同一块木板,测量了小车从不同高度下滑的时间,他们得到如表数据:支撑物的高度h(cm)102030405060708090100小车下滑的时间t(s)4.233.002.452.131.891.711.591.501.411.35下列说法正确的是()A.当h=70cm时,t=1.50s B.h每增加10cm,t减小1.23 C.随着h逐渐变大,t也逐渐变大 D.随着h逐渐升高,小车下滑的平均速度逐渐加快【分析】根据函数的表示方法,可得答案.【解答】解;A、当h=70cm时,t=1.59s,故A错误;B、h每增加10cm,t减小的值不一定,故B错误;C、随着h逐渐升高,t逐渐变小,故C错误;D、随着h逐渐升高,小车的时间减少,小车的速度逐渐加快,故D正确;故选:D.题型三用图像表示函数13.下列各图象中,y不是x的函数的是()A.B.C.D.【分析】函数的定义:在某变化过程中,有两个变量x、y,并且对于x在某个范围内的每一个确定的值,按照对应法则,y都有唯一确定的值和它对应,则x叫自变量,y是x的函数.根据定义再结合图象观察就可以得出结论.【解析】根据函数定义,如果在某变化过程中,有两个变量x、y,并且对于x在某个范围内的每一个确定的值,按照对应法则,y都有唯一确定的值和它对应.而B中的y的值不具有唯一性,所以不是函数图象.故选:B.14.下面坐标平面中所反映的图象中,不是函数图象的是()A.B.C.D.【分析】根据函数的定义进行判断即可.【解析】函数是指给定一个自变量的取值,都有唯一确定的函数值与其对应,即垂直x轴的直线与函数的图象只能有一个交点,结合选项可知,只有选项D中是一个x对应1或2个y,故D选项中的图象不是函数图象,故选:D.15.小江同学热爱体育锻炼,每周六上午他都先从家跑步到离家较远的田园广场,在那里与同学打一段时间的羽毛球后再慢步回家.下面能反映小华同学离家的距离y与所用时间x之间函数图象的是()A.B.C.D.【分析】本题需先根据已知条件,确定出每一步的函数图形,再把图象结合起来即可求出结果.【解析】图象应分三个阶段,第一阶段:跑步到离家较远的田园广场,在这个阶段,离家的距离随时间的增大而增大;第二阶段:打了一会儿羽毛球,这一阶段离家的距离不随时间的变化而改变;第三阶段:慢步回家,这一阶段,离家的距离随时间的增大而减小,并且这段的速度小于第一阶段的速度.故选:D.16.第一次“龟兔赛跑”,兔子因为在途中睡觉而输掉比赛,很不服气,决定与乌龟再比一次,并且骄傲地说,这次我一定不睡觉,让乌龟先跑一段距离我再去追都可以赢.结果兔子又一次输掉了比赛,则下列函数图象可以体现这次比赛过程的是A.B.C.D.【答案】B【解析】由于乌龟比兔子早出发,而且早到终点;故B选项正确;故选B.【点睛】本题主要考查函数图象,解题的关键是弄清函数图象中横、纵轴所表示的意义及实际问题中自变量与因变量之间的关系.17.如图所示,货车匀速通过隧道,隧道长大于货车长,从货车进入隧道开始,货车在隧道内的长度y与行驶的时间x之间的关系用图象描述大致是()A.B.C.D.【分析】先分析题意,把各个时间段内y与x之间的关系分析清楚,本题是分段函数,分为三段.【解析】根据题意可知货车进入隧道的时间x与货车在隧道内的长度y之间的关系具体可描述为:当货车开始进入时y逐渐变大,货车完全进入后一段时间内y不变,当货车开始出来时y逐渐变小,∴反映到图象上应选A.故选:A.18.网课期间,七年级的小明学习到“用尺规作已知角”时发现自己没有圆规,放学后他匀速跑步到附近的超市,在超市买好圆规后,再沿原路匀速步行回家,他离家的距离y与离家时间x的关系图象大致是()A.B.C.D.【分析】根据在每段中,离家的距离随时间的变化情况即可进行判断.【解析】图象应分三个阶段,第一阶段:匀速跑步到超市,在这个阶段,离家的距离随时间的增大而增大;第二阶段:在超市停留了一段时间,这一阶段离家的距离不随时间的变化而改变.故D不合题意;第三阶段:沿原路匀速步行回家,这一阶段,离家的距离随时间的增大而减小,故A不合题意,并且这段的速度小于第一阶段的速度,则C不合题意.故选:B.19.在一个长2分米、宽1分米、高8分米的长方体容器中,水面高5分米.把一个实心铁块缓慢浸入这个容器的水中,能够表示铁块浸入水中的体积y(单位:分米3)与水面上升高度x(单位:分米)之间关系的图象的是()A.B.C.D.【分析】依题意,铁块浸入水中的体积(y)随水面上升高度(x)增大而增大,则两者之间是正比例函数.【解析】把一个实心铁块缓慢浸入这个容器的水中,铁块浸入水中的体积(y)随水面上升高度(x)增大而增大,即y是x的正比例函数.自变量x的取值范围是0≤x≤3.故选:A.题型四函数的取值20.(2021·湖北黄石市·中考真题)函数的自变量的取值范围是()A. B. C.且 D.且【答案】C【分析】根据被开方数大于等于0,分母不为0以及零次幂的底数不为0,列式计算即可得解.【详解】解:函数的自变量的取值范围是:且,解得:且,故选:C.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.21.(2021·四川泸州市·)函数的自变量x的取值范围是()A.x<1 B.x>1 C.x≤1 D.x≥1【答案】B【分析】根据二次根式被开方数大于等于0,分母不等于0列式计算即可得解.【详解】解:由题意得,x-1≥0且x-1≠0,解得x>1.故选:B.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.22.(2021·江苏无锡市·中考真题)函数y=的自变量x的取值范围是()A.x≠2 B.x<2 C.x≥2 D.x>2【答案】D【分析】根据被开放式的非负性和分母不等于零列出不等式即可解题.【详解】解:∵函数y=有意义,∴x-20,即x>2故选D【点睛】本题考查了根式有意义的条件,属于简单题,注意分母也不能等于零是解题关键.23.(2020•天水)已知函数y=x+2x−3,则自变量x的取值范围是【分析】根据被开方数大于或等于0,分母不等于0,可以求出x的范围.【解析】根据题意得:x+2≥0且x﹣3≠0,解得:x≥﹣2且x≠3.故答案为:x≥﹣2且x≠3.24.(2020•哈尔滨)在函数y=xx−7中,自变量x的取值范围是【分析】根据分母不等于0列式计算即可得解.【解析】由题意得x﹣7≠0,解得x≠7.故答案为:x≠7.25.(2020•黑龙江)在函数y=12x−3中,自变量x的取值范围是【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解析】由题意得2x﹣3>0,解得x>1.5.故答案为:x>1.5.26.(2020•上海)已知f(x)=2x−1,那么f(3)的值是【分析】根据f(x)=2【解析】∵f(x)=2∴f(3)=2故答案为:1.27.(2019•安顺)函数y=的自变量x的取值范围是A.x<2 B.x≤2 C.x>2 D.x≥2【答案】D【解析】根据题意得:2x–4≥0,解得x≥2.故选D.【名师点睛】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.28.(2019•眉山)函数y=中自变量x的取值范围是A.x≥–2且x≠1 B.x≥–2 C.x≠1 D.–2≤x<1【答案】A【解析】根据二次根式有意义,分式有意义得:x+2≥0且x–1≠0,解得:x≥–2且x≠1.故选A.【名师点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.自变量的取值范围必须使含有自变量的表达式都有意义:①当表达式的分母不含有自变量时,自变量取全体实数.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.29.(2019•岳阳)函数y=中,自变量x的取值范围是A.x≠0B.x>–2C.x>0D.x≥–2且x≠0【答案】D【解析】根据题意得:,解得x≥–2且x≠0.故选D.【名师点睛】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.30.(2020•无锡)函数y=2+3x−1A.x≥2 B.x≥13 C.x≤1【分析】根据二次根式的被开方数大于等于0列不等式求解即可.【解析】由题意得,3x﹣1≥0,解得x≥1故选:B.31.(2020•菏泽)函数y=x−2A.x≠5 B.x>2且x≠5 C.x≥2 D.x≥2且x≠5【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解析】由题意得x﹣2≥0且x﹣5≠0,解得x≥2且x≠5.故选:D.32.(2020•甘孜州)函数y=1A.x>﹣3 B.x<3 C.x≠﹣3 D.x≠3【分析】根据分母不等于0列式计算即可得解.【解析】由题意得x+3≠0,解得x≠﹣3.故选:C.33.(2020•牡丹江)在函数y=x−3A.x≠3 B.x≥0 C.x≥3 D.x>3【分析】根据被开方数大于等于0列式计算即可得解.【解析】由题意得,x﹣3≥0,解得x≥3.故选:C.34.(2020•遂宁)函数y=x+2A.x>﹣2 B.x≥﹣2 C.x>﹣2且x≠1 D.x≥﹣2且x≠1【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不为0,列不等式组可求得自变量x的取值范围.【解析】根据题意得:x+2≥0解得:x≥﹣2且x≠1.故选:D.34.(2020•凉山州)函数y=x+1中,自变量x的取值范围是【分析】根据被开方数大于等于0列式计算即可得解.【解析】由题意得,x+1≥0,解得x≥﹣1.故答案为:x≥﹣1.35.(2020•铜仁市)函数y=2x−4中,自变量x的取值范围是【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以2x﹣4≥0,可求x的范围.【解析】2x﹣4≥0解得x≥2.36.(2020•烟台)按如图所示的程序计算函数y的值,若输入的x值为﹣3,则输出y的结果为.【分析】根据﹣3<﹣1确定出应代入y=2x2中计算出y的值.【解析】∵﹣3<﹣1,∴x=﹣3代入y=2x2,得y=2×9=18,故答案为:18.题型五函数图像性质37.(2021·重庆中考真题)小明从家出发沿笔直的公路去图书馆,在图书馆阅读书报后按原路回到家.如图,反映了小明离家的距离y(单位:km)与时间t(单位:h)之间的对应关系.下列描述错误的是()A.小明家距图书馆3kmB.小明在图书馆阅读时间为2hC.小明在图书馆阅读书报和往返总时间不足4hD.小明去图书馆的速度比回家时的速度快【答案】D【分析】根据题意,首先分析出函数图象中每一部分所对应的实际意义,然后逐项分析即可.【详解】根据题意可知,函数图象中,0-1h对应的实际意义是小明从家到图书馆的过程,走过的路程为3km,故A正确;1-3h对应的实际意义是小明在图书馆阅读,即阅读时间为3-1=2h,故B正确;3h后直到纵坐标为0,对应的实际意义为小明从图书馆回到家中,显然,这段时间不足1h,从而小明在图书馆阅读书报和往返总时间不足4h,故C正确;显然,从图中可知小明去图书馆的速度为,回来时,路程同样是3km,但用时不足1h,则回来时的速度大于,即大于去时的速度,故D错误;故选:D.【点睛】本题考查函数图象与实际行程问题,理解函数图象所对应的实际意义是解题关键.38.(2021·湖南邵阳市·中考真题)某天早晨7:00,小明从家骑自行车去上途中因自行车发生故障,就地修车耽误了一段时间,修好车后继续骑行,7:30赶到了学校.图所示的函数图象反映了他骑车上学的整个过程.结合图象,判断下列结论正确的是()A.小明修车花了15minB.小明家距离学校1100mC.小明修好车后花了30min到达学校D.小明修好车后骑行到学校的平均速度是3m/s【答案】A【分析】根据函数图像进行分析计算即可判断.【详解】解:根据图像7:05-7:20为修车时间20-5=15分钟,故A正确;小明家距离学校2100m,故B错误;小明修好车后花了30-20=10分钟到达学校,故C错误;小明修好车后骑行到学校的平均速度是(2100-1000)÷600=m/s,故D错误;故选:A.【点睛】本题考查函数图像的识别,正确理解函数图像的实际意义是解题的关键.39.(2020•广州模拟)已知小明的家、体育场、文具店在同一直线上,图中的信息反映的过程是:小明从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x表示时间,y表示小明离家的距离.依据图中的信息,下列说法错误的是()A.体育场离小明家2.5km B.体育场离文具店1km C.小明从体育场出发到文具店的平均速度是50m/min D.小明从文具店回家的平均速度是60m/min【分析】因为小明从家直接到体育场,故第一段函数图象所对应的y轴的最高点即为体育场离小明家的距离;小明从体育场到文具店是减函数,此段函数图象最高点与最低点纵坐标的差为小明家到文具店的距离;根据“速度=路程÷时间”即可得出小明从体育场出发到文具店的平均速度;先求出小明家离文具店的距离,再求出从文具店到家的时间,求出二者的比值即可.【解析】由函数图象可知,体育场离小明家2.5km,故选项A不合题意;由函数图象可知,小明家离文具店1.5千米,离体育场2.5千米,所以体育场离文具店1千米,故选项B不合题意;小明从体育场出发到文具店的平均速度为:1000÷(45﹣30)=200小明从文具店回家的平均速度是1500÷(90﹣65)=60(m/min),故选项D不合题意.故选:C.40.(2021·湖南中考真题)如图,在边长为4的菱形中,.点从点出发,沿路线运动.设点经过的路程为,以点,,为顶点的三角形的面积为,则下列图象能反映与的函数关系的是()A.B.C.D.【答案】A【分析】过点B作BE⊥AD于点E,由题意易得,当点P从点A运动到点B时,△ADP的面积逐渐增大,当点P在线段BC上时,△ADP的面积保持不变,当点P在CD上时,△ADP的面积逐渐减小,由此可排除选项.【详解】解:过点B作BE⊥AD于点E,如图所示:∵边长为4的菱形中,,∴,∴∠ABE=30°,∴,∴,当点P从点A运动到点B时,△ADP的面积逐渐增大,点P与点B重合时,△ADP的面积最大,最大为;当点P在线段BC上时,△ADP的面积保持不变;当点P在CD上时,△ADP的面积逐渐减小,最小值为0;∴综上可得只有A选项符合题意;故选A.【点睛】本题主要考查函数图象及菱形的性质、勾股定理,熟练掌握函数图象及菱形的性质、勾股定理是解题的关键.41.(2020春•凌海市期末)如图,下面图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间之间的关系,下列说法中错误的是()A.第3分钟时汽车的速度是40千米/小时 B.第12分钟时汽车的速度是0千米/小时 C.从第3分钟后到第6分钟,汽车停止不动 D.从第9分钟到第12分钟,汽车速度从60千米/小时减少到0千米/小时【分析】根据图象反映的速度与时间的关系,可以计算路程,针对每一个选项,逐一判断.【解析】横轴表示时间,纵轴表示速度.当第3分的时候,对应的速度是40千米/时,故A说法正确;第12分的时候,对应的速度是0千米/时,故B说法正确;从第3分到第6分,汽车的速度保持不变,是40千米/时,行驶的路程为40×1从第9分到第12分,汽车对应的速度分别是60千米/时,0千米/时,所以汽车的速度从60千米/时减少到0千米/时,故D说法正确.故选:C.42.(2020春•邹平市期末)甲骑自行车、乙骑摩托车沿相同路线匀速由A地到B地,行驶过程中路程与时间的函数关系如图所示.根据图象信息可知,乙在甲骑行20分钟时追上甲.【分析】根据函数图象可知甲先出发10分钟,甲出发15分钟所走路程为3km,乙出发5分钟所走路程为2km,据此分别求出他们的速度,再列方程解答即可.【解析】由题意得:甲的速度为:315乙的速度为:215−10设乙在甲骑行x分钟时追上甲,根据题意得:0.2x=0.4(x﹣10),解得x=20.所以乙在甲骑行20分钟时追上甲.故答案为:20.43.(2020春•赫山区期末)今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.则下列说法中,正确的序号为.①小明中途休息用了20分钟.②小明休息前爬山的平均速度为每分钟70米.③小明在上述过程中所走的路程为6600米.④小明休息前爬山的平均速度大于休息后爬山的平均速度.【分析】根据函数图象可知,小明40分钟爬山2800米,40~60分钟休息,60~100分钟爬山(3800﹣2800)米,爬山的总路程为3800米,根据路程、速度、时间的关系进行解答即可.【解析】①、根据图象可知,在40~60分钟,路程没有发生变化,所以小明中途休息的时间为:60﹣40=20分钟,故正确;②、根据图象可知,当t=40时,s=2800,所以小明休息前爬山的平均速度为:2800÷40=70(米/分钟),故B正确;③、根据图象可知,小明在上述过程中所走的路程为3800米,故错误;④、小明休息后的爬山的平均速度为:(3800﹣2800)÷(100﹣60)=25(米/分),小明休息前爬山的平均速度为:2800÷40=70(米/分钟),70>25,所以小明休息前爬山的平均速度大于休息后爬山的平均速度,故正确;综上所述,正确的有①②④.故答案为:①②④44.(2020•商河县一模)小东从A地出发以某一速度向B地走去,同时小明从B地出发以另一速度向A地而行,y1、y2分别表示小东、小明离B地的距离(千米)与所用时间x(小时)的关系如图所示,根据图象提供的信息,请求出小明到达A地所需的时间应为203【分析】根据题意结合图象求出A、B两地之间的距离以及小明的速度即可解答.【解析】A、B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国北斗应急预警通信行业资本规划与股权融资战略制定与实施研究报告
- 2025-2030年中国电气化铁路接触网行业资本规划与股权融资战略制定与实施研究报告
- 2025-2030年中国消费性服务行业营销创新战略制定与实施研究报告
- 2025-2030年中国工艺品行业并购重组扩张战略制定与实施研究报告
- 自动售卖机创业计划书
- 建设生态文明-推进科学发展
- 新员工入职培训课件12
- 2024年幼儿园成长手册寄语
- 狗狗护主知识培训课件
- 2025年中国头孢拉定行业发展监测及投资战略研究报告
- 2024年萍乡卫生职业学院单招职业适应性测试题库参考答案
- 中国农业银行信用借款合同
- ISO 56001-2024《创新管理体系-要求》专业解读与应用实践指导材料之9:“5领导作用-5.3创新战略”(雷泽佳编制-2025B0)
- 江苏省连云港市2023-2024学年八年级上学期期末数学试题(原卷版)
- 初中英语听力高频词
- 2025年生活饮用水监督检查工作计划
- Unit 3 My School Section B 1a-1d 教学实录 2024-2025学年人教版七年级上册英语
- 2024年度知识产权许可合同:万达商业广场商标使用许可合同3篇
- 服务营销课件-课件
- 一年级期末数学家长会课件
- 2024智能变电站新一代集控站设备监控系统技术规范部分
评论
0/150
提交评论