浙江省温州市瑞安滨江中学高二数学理知识点试题含解析_第1页
浙江省温州市瑞安滨江中学高二数学理知识点试题含解析_第2页
浙江省温州市瑞安滨江中学高二数学理知识点试题含解析_第3页
浙江省温州市瑞安滨江中学高二数学理知识点试题含解析_第4页
浙江省温州市瑞安滨江中学高二数学理知识点试题含解析_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省温州市瑞安滨江中学高二数学理知识点试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.过点(2,1)的直线中,被圆截得弦长最长的直线方程为(

)A. B. C. D.参考答案:A略2.命题“存在实数,使

>1”的否定是A.对任意实数,都有>1

B.不存在实数,使1C.对任意实数,都有1

D.存在实数,使1参考答案:C3.若复数满足,则的虚部为(

)A.

B.

C.

D.参考答案:D4.凸边形有条对角线,则凸边形的对角线的条数为(

)A.

B.

C.

D.参考答案:C5.已知椭圆的左右焦点分别为F1,F2,过右焦点F2作x轴的垂线,交椭圆于A,B两点.若等边的周长为,则椭圆的方程为(

)A.

B.

C.

D.参考答案:A由题意可得等边的边长为,则,由椭圆的定义可得,即,由,即有,则,则椭圆的方程为,故选A.

6.已知在实数集上是减函数,若,则下列正确的是

A.

B.

C.

D.参考答案:D7.随机变量X~B(6,),则P(X=3)=()A. B. C. D.参考答案:C【考点】CN:二项分布与n次独立重复试验的模型.【分析】X~B(6,)表示6次独立重复试验,每次实验成功概率为,P(X=3)表示6次试验中成功三次的概率.【解答】解:P(X=3)==故选C8.数列{cn}为等比数列,其中c1=2,c8=4,f(x)=x(x﹣c1)(x﹣c2)…(x﹣c8),f′(x)为函数f(x)的导函数,则f′(0)=(

) A.0 B.26 C.29 D.212参考答案:D考点:导数的运算.专题:导数的概念及应用;等差数列与等比数列.分析:由已知求出数列{cn}的通项公式,对函数f(x)求导,求出f′(x),令x=0求值.解答: 解:因为数列{cn}为等比数列,其中c1=2,c8=4,所以公比q=,由f(x)=x(x﹣c1)(x﹣c2)…(x﹣c8),得f′(x)=(x﹣c1)(x﹣c2)…(x﹣c8)+x[(x﹣c1)(x﹣c2)…(x﹣c8)]',所以f′(0)=(﹣c1)(﹣c2)…(﹣c8)=c1c2…c8==212;故选D.点评:本题考查了等比数列的通项求法以及导数的运算;解答本题求出等比数列的通项公式以及函数的导数是关键.9.已知过点的直线的倾斜角为45°,则的值为(

)A.1

B.2

C.3

D.4参考答案:D略10.已知函数的导函数的图像如下,则(

A.函数有1个极大值点,1个极小值点

B.函数有2个极大值点,2个极小值点C.函数有3个极大值点,1个极小值点D.函数有1个极大值点,3个极小值点参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.正方体ABCD-A1B1C1D1中,BC1与截面BB1D1D所成的角是()A.60°

B.45°

C.30°

D.90°参考答案:C略12.设,不等式对恒成立,则的取值范围为____________.参考答案:13.二面角的棱上有、两点,直线、分别在这个二面角的两个半平面内,且都垂直于.已知,,,,则该二面角的大小为__________.参考答案:如图,过点作,使得,连接,,则四边形为平行四边形,∴,,,,而,∴即是二面角的平面角,∵,,,,∴,,∴平面,∴,在中,,,∴,在中,,∴,故该二面角的大小为.14.若复数z满足,则z的虚部为

.参考答案:复数满足,则故的虚部为.

15.函数的定义域是_________________________参考答案:略16.已知函数,数列满足,且数列是单调递增数列,则实数的取值范围是

.参考答案:略17.已知点P在圆x2+y2=1运动,点M的坐标为M(2,0),Q为线段PM的中点,则点Q的轨迹方程为

.参考答案:(x﹣1)2+y2=

【考点】轨迹方程.【分析】本题宜用代入法求轨迹方程,设Q(x,y),P(a,b),由中点坐标公式得到a=2x﹣2,b=2y,代入x2+y2=16到Q(x,y)点的坐标所满足的方程,整理即得点Q的轨迹方程.【解答】解:设Q(x,y),P(a,b)由M(2,0),Q为线段PM的中点故有a=2x﹣2,b=2y又P为圆x2+y2=1上一动点,∴(2x﹣2)2+(2y)2=16,整理得(x﹣1)2+y2=,故Q的轨迹方程是(x﹣1)2+y2=.故答案为:(x﹣1)2+y2=.【点评】本题的考点是轨迹方程,考查用代入法求支点的轨迹方程,代入法适合求动点与另外已知轨迹方程的点有固定关系的点的轨迹方程,用要求轨迹方程的点的坐标表示出已知轨迹方程的点的坐标,再代入已知的轨迹方程,从而求出动点的坐标所满足的方程.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知公差不为0的等差数列{an}的首项,且,,成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)记,求数列{bn}的前n项和Sn.参考答案:(Ⅰ)设等差数列的公差为,,,成等比数列,(Ⅱ)由(Ⅰ)知,19.椭圆()过点,为原点.(1)求椭圆的方程;(2)是否存在圆心在原点,使得该圆的任意一条切线与椭圆恒有两个交点、,且?若存在,写出该圆的方程,并求出的最大值;若不存在,说明理由.

参考答案:解析:

20.某校高三文科分为四个班.高三数学调研测试后,随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人.抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图所示,其中120~130(包括120分但不包括130分)的频率为0.05,此分数段的人数为5人.

(1)问各班被抽取的学生人数各为多少人?

(2)在抽取的所有学生中,任取一名学生,求分数不小于90分的概率.参考答案:解:(1)由频率分布条形图知,抽取的学生总数为人.

∵各班被抽取的学生人数成等差数列,设其公差为,由=100,解得.∴各班被抽取的学生人数分别是22人,24人,26人,28人.

(2)在抽取的学生中,任取一名学生,则分数不小于90分的概率为0.35+0.25+0.1+0.05=0.75.略21.设函数f(x)=2x3-3(a+1)x2+6ax+8,其中a∈R.已知f(x)在x=3处取得极值.(1)求f(x)的解析式;(2)求f(x)在点A(1,16)处的切线方程.参考答案:解(1)f′(x)=6x2-6(a+1)x+6a.∵f(x)在x=3处取得极值,∴f′(3)=6×9-6(a+1)×3+6a=0,解得a=3.∴f(x)=2x3-12x2+18x+8.(2)A点在f(x)上,由(1)可知f′(x)=6x2-24x+18,f′(1)=6-24+18=0,∴切线方程为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论