浙江省嘉兴市杨庙中学高二数学理期末试卷含解析_第1页
浙江省嘉兴市杨庙中学高二数学理期末试卷含解析_第2页
浙江省嘉兴市杨庙中学高二数学理期末试卷含解析_第3页
浙江省嘉兴市杨庙中学高二数学理期末试卷含解析_第4页
浙江省嘉兴市杨庙中学高二数学理期末试卷含解析_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省嘉兴市杨庙中学高二数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在等差数列中,若,则的前项和(

)A.

B.

C.

D.参考答案:B2.已知是椭圆的两个焦点,满足的点M总在椭圆内部,则椭圆离心率的取值范围是(

)A.

B.

C.

D.参考答案:C3.过抛物线y2=4x的焦点F的直线交该抛物线于点A.若|AF|=3,则点A的坐标为()A.(2,2) B.(2,﹣2) C.(2,±2) D.(1,±2)参考答案:C【考点】抛物线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】确定抛物线y2=4x的准线方程,利用抛物线的定义,可求A点的横坐标,即可得出A的坐标.【解答】解:抛物线y2=4x的准线方程为x=﹣1,F(1,0).设A(x,y),∵|AF|=3,∴根据抛物线的定义可得|AF|=3=x+1,∴x=2,∴y=,∴A的坐标为(2,).故选:C,【点评】抛物线的定义告诉我们:抛物线上的点到焦点的距离等于它到准线的距离.4.已知函数的周期为2,当时,那么函数的图像与函数的图像的交点共有(

).A.10个

B.9个

C.8个

D.1个

参考答案:A略5.一个正方体的八个顶点都在同一个球面上,已知这个球的表面积是12π,那么这个正方体的体积是(A)

(B)

(C)8

(D)24参考答案:C6.椭圆的焦距为(

)A、10

B、9

C、8

D、6参考答案:D略7.已知集合,B={x|x2﹣2x﹣8≤0},则A∩B=()A.{x|﹣2≤x≤0} B.{x|2≤x≤4} C.{x|0≤x≤4} D.{x|x≤﹣2}参考答案:C【考点】1E:交集及其运算.【分析】解不等式求出集合A、B,根据交集的定义写出A∩B.【解答】解:集合={x|x≥0},B={x|x2﹣2x﹣8≤0}={x|﹣2≤x≤4},则A∩B={x|0≤x≤4}.故选:C.【点评】本题考查了解不等式与求交集的运算问题,是基础题.8.非空数集A={a1,a2,a3,…,an}(n∈N*)中,所有元素的算术平均数记为E(A),即E(A)=.若非空数集B满足下列两个条件:①B?A;②E(B)=E(A),则称B为A的一个“保均值子集”.据此,集合{1,2,3,4,5}的“保均值子集”有()A.5个 B.6个 C.7个 D.8个参考答案:C【考点】子集与交集、并集运算的转换;众数、中位数、平均数.【分析】根据集合A和“保均值子集”的定义把集合的非空真子集列举出来,即可得到个数.【解答】解:非空数集A={1,2,3,4,5}中,所有元素的算术平均数E(A)==3,∴集合A的“保均值子集”有:{3},{1,5},{2,4},{3,1,5},{3,2,4},{1,5,2,4},{1,2,3,4,5}共7个;故选C.9.已知直线(t为参数)与曲线的相交弦中点坐标为(1,1),则a等于(

)A. B. C. D.参考答案:A【分析】根据参数方程与普通方程的互化,得直线的普通方程为,由极坐标与直角坐标的互化,得曲线普通方程为,再利用“平方差”法,即可求解.【详解】由直线(为参数),可得直线的普通方程为,由曲线,可得曲线普通方程为,设直线与椭圆的交点为,,则,,两式相减,可得.所以,即直线的斜率为,所以,故选A.【点睛】本题主要考查了参数方程与普通方程、极坐标方程与直角坐标方程的互化,以及中点弦问题的应用,其中解答中熟记互化公式,合理应用中点弦的“平方差”法是解答的关键,着重考查了推理与运算能力,属于基础题.10.已知集合A={(x,y)|y=5x},B={(x,y)|x2+y2=5},则集合A∩B中元素的个数为()A.0 B.1 C.2 D.3参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.从四双不同的袜子中,任取五只,其中至少有两只袜子是一双,这个事件是_______(填“必然”、“不可能”或“随机”)事件.参考答案:必然【分析】根据题意,分析可得从四双不同的袜子中,任取五只,必然有两只袜子是一双,由随机事件的定义,分析可得答案.【详解】根据题意,四双不同的袜子共8只,从中任取5只,必然有两只袜子是一双,则至少有两只袜子是一双是必然事件.故答案为:必然【点睛】本题考查随机事件,关键是掌握随机事件的定义,属于基础题.12.已知函数f(x)=ex-x+a有零点,则a的取值范围是_________.参考答案:(-,-1]13.将参数方程(t为参数),转化成普通方程为_______.参考答案:【分析】将参数方程变形为,两式平方再相减可得出曲线的普通方程.【详解】将参数方程变形为,两等式平方得,上述两个等式相减得,因此,所求普通方程为,故答案为:.【点睛】本题考查参数方程化为普通方程,在消参中,常用平方消元法与加减消元法,考查计算能力,属于中等题.14.如右图所示的程序输出的结果是_________参考答案:1023略15.点P是圆C:(x+2)2+y2=4上的动点,定点F(2,0),线段PF的垂直平分线与直线CP的交点为Q,则点Q的轨迹方程是▲.参考答案:略16.若直线(2m2+m-3)x+(m2-m)y=4m-l与直线2x-3y=5平行,则m的值是_______。参考答案:17.已知命题,,则是_____________________参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.2017年12月1日,“国际教育信息化大会”在山东青岛开幕.为了解哪些人更关注“国际教育信息化大会”,某机构随机抽取了年龄在15-75岁之间的100人进行调查,并按年龄绘制成频率分布直方图,如图所示,其分组区间为:[15,25),[25,35),[35,45),[45,55),[55,65),[65,75].把年龄落在区间[15,35)和[35,75]内的人分别称为“青少年”和“中老年”.(1)根据频率分布直方图求样本的中位数(保留两位小数)和众数;(2)根据已知条件完成下面的2×2列联表,并判断能否有99%的把握认为“中老年”比“青少年”更加关注“国际教育信息化大会”;

关注不关注合计青少年15

中老年

合计5050100附:参考公式,其中.临界值表:0.050.0100.0013.8416.63510.828参考答案:(1)根据频率分布直方图可知样本的众数为40,因为,设样本的中位数为,则,所以,即样本的中位数约为36.43.(2)依题意可知,抽取的“青少年”共有人,“中老年”共有人.完成的列联表如下:

关注不关注合计青少年中老年合计结合列联表的数据得,因为,所以有的把握认为“中老年”比“青少年”更加关注“国际教育信息化大会”.

19.在平面直角坐标系中,已知平行四边形的三个顶点分别是(-1,-2),(0,1),(3,2)。①求直线的方程;②求平行四边形的面积;参考答案:①因为B(0,1),C(3,2),由直线的两点式方程得直线的方程是②由点到直线的距离是,,所以,即得,所以平行四边形的面积是20.(本小题13分)已知椭圆:,椭圆以的长轴为短轴,且与有相同的离心率.(1)求椭圆的方程;(2)设O为坐标原点,过O的直线l与相交于A,B两点,且l与相交于C,D两点.若,求直线l的方程.参考答案:21.(1)设a,b是两个不相等的正数,若+=1,用综合法证明:a+b>4(2)已知a>b>c,且a+b+c=0,用分析法证明:<.参考答案:【考点】R8:综合法与分析法(选修).【分析】(1)利用综合法进行证明即可.(2)利用分析法进行证明.【解答】解:(1)因为a>0,b>0,且a≠b,所以a+b=(a+b)()=1+1+>2+2=4.所以a+b>4

(2)因为a>b>c,且a+b+c=0,所以a>0,c<0,要证明原不等式成立,只需证明<a,即证b2﹣ac<3a2,又b=﹣(a+c),从而只需证明(a+c)2﹣ac<3a2,即证(a﹣c)(2a+c)>0,因为a﹣c>0,2a+c=a+c+a=a﹣b>0,所以(a﹣c)(2a+c)>0成立,故原不等式成立.(12分)【点评】本题主要考查不等式的证明,利用分析法和综合法是解决本题的关键.22.下列程序的输出结果构成了数列的前

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论