![2023年山南市数学七年级上册期末质量检测试题含解析_第1页](http://file4.renrendoc.com/view12/M00/22/3E/wKhkGWX-KnOADlXjAAJE85W7Mnw703.jpg)
![2023年山南市数学七年级上册期末质量检测试题含解析_第2页](http://file4.renrendoc.com/view12/M00/22/3E/wKhkGWX-KnOADlXjAAJE85W7Mnw7032.jpg)
![2023年山南市数学七年级上册期末质量检测试题含解析_第3页](http://file4.renrendoc.com/view12/M00/22/3E/wKhkGWX-KnOADlXjAAJE85W7Mnw7033.jpg)
![2023年山南市数学七年级上册期末质量检测试题含解析_第4页](http://file4.renrendoc.com/view12/M00/22/3E/wKhkGWX-KnOADlXjAAJE85W7Mnw7034.jpg)
![2023年山南市数学七年级上册期末质量检测试题含解析_第5页](http://file4.renrendoc.com/view12/M00/22/3E/wKhkGWX-KnOADlXjAAJE85W7Mnw7035.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年山南市数学七上期末质量检测试题
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他
答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.按下面的程序计算:
如果"值为非负整数,最后输出的结果为2343,则开始输入的,,值可能有().
A.2种B.3种C.4种D.5种
2.现实生活中,如果收入1000元记作+1000元,那么-800表示()
A.支出800元B.收入800元C.支出200元D.收入200元
3.下列说法中正确的个数是()
(1)”和0都是单项式
(2)多项式—3//?+7/〃一2川?+1的次数是3
(3)单项式一17历4的系数是一J.
33
(4)*2+句一/可读作x2、2孙、一J2的和
A.1个B.2个C.3个D.4个
4.下列说法中:①40。35,=2455,;②如果NA+NB=180。,那么NA与NB互为余角;③经过两点有一条直线,并且
只有一条直线;④在同一平面内,不重合的两条直线不是平行就是相交.正确的个数为().
A.1个B.2个C.3个D.4个
5.某两位数,十位上的数字为a,个位上的数字为b,则这个两位数可表示为()
A.abB.a+bC.10a+bD.lOb+a
6.已知点A,B,。在同一条直线上,若线段舫=3,BC=2,AC=1,则下列判断正确的是()
A.点A在线段上B.点8在线段AC上
C.点C在线段AB上D.点A在线段CB的延长线上
7.若单项式d"+力与_L/夕的和仍是单项式,则加+〃的值是()
2
A.-2B.-1C.2D.3
8.设%y,c是有理数,则下列判断错误的是()
A.若x=»则x+c^y+c若%=乂贝I]x-c=y-c
若冷,则3x=2yD.若%=»则'=2
cc
3a4a5
9.一组按规律排列的式子。2,幺…”.按照上述规律,它的第〃个式子(〃之1且〃为整数)是()
3~5T
n+\乙2〃+1an+}八2〃+l
A.——B.-------D.--
2/7+12〃+12n-l2n-I
10.参加国庆70周年的人数分两部分,一部分是阅兵游行,一部分是群众观看,总共加起来,据官方统计大概是15
万人左右,请将“15万”用科学记数法表示为()
A.15x10,B.1.5xl06C.1.5xl05D.0.15xlO6
11.某天最高气温是2℃,最低气温是一11℃,则这天最高气温与最低气温的差是()
A.-9℃B.9℃C.13℃D.-13℃
12.如图是由若干个小正方体所搭成的几何体,那么从左边看这个几何体时,所看到的几何图形是()
二、填空题(每题4分,满分20分,将答案填在答题纸上)
13.如图,线段AD=6cm,线段AC=8。=4cm,E,尸分别是线段45,CO的中点,则a=
AEBCFD
14.用四舍五入法把数6.5378精确到().01,得近似数为
15.观察下列各数:1,2,5,14…,按你发现的规律计算这列数的第5个数为
16.计算:40°-15。30'=.
17.如果一个角的余角与它的补角度数之比为2:5,则这个角等于_____度.
三、解答题(本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)
18.(5分)(1)计算:6-12+4-8
(2)计算:32v(-1)3--x(-2)
2
19.(5分)解方程
(1)x+3=-3(x-3)
,、2x-l,x+2
(2)=1------.
43
20.(8分)已知线段CO=4,Q是线段C。的中点,先按要求画图形,再解决问题.
(1)反向延长线段CO至点A,使AC=3CD;延长线段CO至点8,使BD’BC
2
(2)求线段BQ的长度.
(3)若尸是线段AC的中点,求线段PQ的长度.
CQD
21.(10分)某园林局有甲、乙、丙三个植树队,已知甲队植树(3。+5)棵,乙队植树的棵树比甲队植的棵数的2倍
还多8棵,丙队植树的棵数比乙队植的棵数的一半少6棵。
(1)问甲队植树的棵数多还是丙队植树的棵数多?多多少棵?
(2)三个队一共植树多少棵?
(3)假设三队共植树2546棵,求三个队分别植树多少棵?
22.(10分)用同样规格的黑、白两种颜色的正方形瓷砖按下图所示的方式铺宽为1.5米的小路.
(1)铺第5个图形用黑色正方形瓷砖块;
(2)按照此方式铺下去,铺第n个图形用黑色正方形瓷砖块;(用含n的代数式表示)
(3)若黑、白两种颜色的瓷砖规格都为(长0.5米x宽0.5米),且黑色正方形瓷砖每块价格25元,白色正方形瓷砖
每块价格30元,若按照此方式恰好铺满该小路某一段(该段小路的总面积为18.75平方米),求该段小路所需瓷砖的
总费用.
23.(12分)如图,直线/上有A、5两点,线段A8=10cm.点C在直线/上,且满足8C=4cm,点产为线段AC的
中点,求线段8尸的长.
B
参考答案
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1、D
【分析】根据最后的结果2343倒推,解出方程,再根据方程求出满足条件的n值.
【详解】由最后的结果可列出方程:5/1+3=2343,解得:吗=468
再由5〃+3=468,解得:々=93
5〃+3=93,解得:々=18
5〃+3=18,解得:4=3
5〃+3=3,解得:%=。
由〃值为非负整数可知〃值可能为0,3,18,93,468这5种情况.
故答案为D.
【点睛】
解题的关键是先把代数式进行变形,然后把满足条件的字母代入计算得到对应的值.
2、A
【分析】此题主要用正负数来表示具有意义相反的两种量:收入记为正,则支出就记为负,直接得出结论即可.
【详解】根据题意得,如果收入1000元记作+1000元,那么-800表示支出800元.
故选A.
【点睛】
本题考查的知识点是负数的意义及其应用,解题关键是熟记负数的意义.
3、B
【分析】利用单项式的定义,单项式系数的定义,多项式的次数和多项式项的定义判断即可.
【详解】(1)单独的一个数或字母也是单项式,故(1)正确;
(2)多项式的次数指的是多项式的项中最高项的次数:-3//,的次数是3,7/后的次数是%-2ab的次数是2,1
的次数是0.故此多项式的次数为4,故(2)错误;
(3)单项式的系数是指单项式的数字因数(注:n是数字),单项式-‘7be"的系数是-[乃,故(3)错误;
33
(4)多项式的项指的是组成多项式的每个单项式(注:要连同单项式前的符合),故(4)正确.
故选B.
【点睛】
此题考查的是单项式的定义,单项式系数的定义,多项式的次数和多项式项的定义.
4、B
【分析】根据角的性质计算,可得到①不正确;根据补角和余角的定义,可得到②不正确;根据直线的性质分析,可
得③和④正确,从而得到答案.
【详解】40°35'=(40x60+35)'=2435',故①不正确;
如果NA+NB=180。,那么NA与NB互为补角,故②不正确;
③、④正确;
故选:B.
【点睛】
本题考查了角、直线的知识;解题的关键是熟练掌握角的计算、余角和补角、直线的性质,从而完成求解.
5、C
【解析】根据两位数的表示方法即可解答.
【详解】根据题意,这个两位数可表示为10a+b,
故选C.
【点睛】
本题考查了一个两位数的表示方法,即为十位上的数字X10+个位上的数字.
6、C
【分析】依据点A,B,C在同一条直线上,线段AB=3,BC=2,AC=1,即可得到点C在线段AB上.
【详解】解:如图,
ACB
•点A,B,C在同一条直线上,线段AB=3,BC=2,AC=L
.•.点A在线段BC的延长线上,故A错误;
点B在线段AC延长线上,故B错误;
点C在线段AB上,故C正确;
点A在线段CB的反向延长线上,故D错误;
故选:C.
【点睛】
本题主要考查了两点间的距离,解决问题的关键是判段点C的位置在线段AB上.
7、B
【分析】根据单项式与‘T/的和仍是单项式,说明这两个单项式能进行合并,而只有同类项才能够进行合并,
2
所以根据同类项的定义即可得出m、n的值.
【详解】解:优"%与",的和仍是单项式
2
;・m+4=2,n=l
m=-2,n=l
:.m+n=-l
故选:B.
【点睛】
本题主要考查的是同类项的定义:字母相同及其相同字母的指数也相同的单项式称为同类项,掌握同类项的定义是解
题的关键.
8、D
【分析】根据等式的性质一一判断即可.
【详解】A.根据等式的性质1可得出,若x=y,则x+c=y+c,故A选项不符合题意;
B.根据等式的性质1得出,若x=y,贝!Jx-c=y-c,,故B选项不符合题意;
C.根据等式的性质2可得出,若]=],则3x=2y,故C选项不符合题意;
D.根据等式的性质2得出,c=0,不成立,故D选项符合题意.
故选:D.
【点睛】
本题考查等式的性质,解题的关键是记住:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边
乘同一个数或除以一个不为零的数,结果仍得等式.
9、C
【分析】分析可得这列式子:其分母依次是1,3,5…,分子依次是a?,a?…,进而得出第n个式子.
【详解】由题意可得:分子可表示为:an+')分母为:2〃-1,
故第n个式子且n为整数)是:上二,
2〃一1
故选:c.
【点睛】
本题主要考查了数字的变化规律,根据题意,找到分子、分母次数的变化规律是解答本题的关键.对于找规律的题目
首先应找出哪些部分发生了变化,是按照什么规律变化的.
10、C
【分析】先将15万改写数的形式,再根据科学记数法的表示法解题即可.
【详解】15万=150000=1.5x1()5
故选C.
【点睛】
本题考查科学记数法,是基础考点,掌握将一个数表示成axlO",lW|a|<10(n为整数)是解题关键.
11、C
【分析】把最高气温减去最低气温,即可得到答案.
【详解】2-(-11)=13。
答:这天最高气温与最低气温的差是13c.
故选C.
【点睛】
本题主要考查有理数的减法的实际应用,掌握有理数的减法法则,是解题的关键.
12、B
【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在三视图中.
【详解】解:从左面看会看到左侧有3个正方形,右侧有1个正方形.
故选B.
【点睛】
本题考查了三视图的知识,左视图是从物体的左面看得到的视图,解答时学生易将三种视图混淆而错误的选其它选项.
二、填空题(每题4分,满分20分,将答案填在答题纸上)
13>4cm
【分析】先求出BC的长度,再根据中点的性质,求出EB和CF的长度,即可求出EF的长.
【详解】VAD=6cm,AC=BD=4cm,
:.CD=AD-AC=6cm—4cm=2cm.AB=AD—BD=2cm.
:.BC=BD-CD=4cm—2cm=2cm.
•••E,F是AB,CD的中点,
AEB=AB4-2=lcm.CF=CD-r2=lcm.
:.EF=EB+BC+CF=lcm+2cm+lcm=4cm.
故答案为:4cm.
【点睛】
本题考查线段中有关中点的计算,关键在于结合题意和中点的性质求出相关线段.
14、6.1
【分析】根据近似数的定义,将千分位上的数字7进行四舍五入即可解答.
【详解】解:6.5378=6.1,
故答案为:6.1.
【点睛】
本题考查近似数和有效数字,理解有效数字和精确度的关系是解答的关键.
15、1
【分析】从第2个数开始,后面的每个数与前面每个数的差都是3的乘方,由此可得到第5个数.
【详解】解:•••2—1=1=3。,
5-2=3=31,
14-5=9=32,
二第5个数为:14+33=14+27=1.
故答案为:L
【点睛】
此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.
16、24030,
【分析】根据角的概念计算即可.
【详解】解:原式=39°60'-15。30'=24。30',
故答案为:24。30,
【点睛】
本题主要考查了角的概念及其计算,熟记度与分之间的数量关系是解题的关键.
17、1
【分析】设这个解为x。,则它的余角为9()。虫。,补角为18()。4。,再根据它们之比列方程,解方程即可.
【详解】设该角为x。,
则5(90-x)°=2(180-x)°,
得x=l°.
故答案是:1.
【点睛】
考查互补和互余的概念,和为180度的两个角互为补角;和为90度的两个角互为余角.
三、解答题(本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)
18、(1)-10;(2)-1
【分析】(1)先同号相加,再异号相加;
(2)先算乘方,再算乘除,最后算减法.
【详解】解:(1)6-12+4-1
=10-20
=-10;
(2)32-r(-1)3--X(-2)
2
=9+(-1)+1
=-9+1
=-1.
【点睛】
本题考查有理数的四则运算、指数幕的运算,解题的关键是掌握有理数的四则运算、指数暮的运算.
3
19、(1)-;(2)0.7
2
【分析】(1)方程去括号,移项合并,把系数化为1,即可求出解;
(2)方程去分母,移项合并,把系数化为1,即可求出解.
【详解】解:⑴去括号得:x+3=—3x+9,
移项合并得:4x=6,
3
解得:x=];
⑵去分母得:6x—3=12—4x—8,
移项合并得:10x=7,
解得:x=0.7.
【点睛】
本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把系数化为1,求出解.
20、(1)见解析;(2)4;(3)8
【分析】(1)根据题意即可作图;
(2)根据中点的性质即可求解;
(3)根据中点的性质与线段的关系即可求解
【详解】解:(1)如图所示
•------------•,-•
,4CQDB
⑵因为。是线段CD的中点,
所以OQ=gcD=2
因为
2
所以BO=CZ)=4,
(3)如图,因为点。是线段CO的中点,
所以CQ=4CO=2,AC=3CO=12.
2
因为P是线段AC的中点,
所以PC='AC=6,
2
所以PQ-PC+CQ—6+2=8
•------Y---------------。•9
4PC0D8
【点睛】
此题主要考查线段的求解,解题的关键是熟知中点的性质.
21、(1)甲队植树的棵数比丙队植树的棵数多,多2棵;
(2)三个队一共植树12a+26(棵);
(3)甲队植树635棵,乙队植树1278棵,丙队植树633棵.
【分析】(D根据题意,依次用含a的代数式表示出甲、乙、丙三队植树的颗数,然后运用作差法比较甲、丙两队所
植树颗数的代数式的大小即可.
(2)直接将表示甲、乙、丙三队植树颗数的代数式相加化简即可.
(3)依题意列出关于a的方程解得a,再分别代入甲、乙、丙三队植树的棵数代数式求解即可.
【详解】解:依题意有,甲队植树(3。+5)棵,乙队植树为2(3。+5)+8=(6。+18)棵,丙队植树为
,(6a+18)—6=(3a+3)棵,
2
(1)V3a+5-(3a+3)=2>0
甲队植树的棵数比丙队植树的棵数多,多2棵;
(2)3a+5+6a+18+3a+3=12<7+26(棵)
,三个队一共植树12a+26(棵);
(3)依题意:
12。+26=2546,
解得:。=21()
.•.甲队植树3^+5=3x210+5=635(棵),
乙队植树为6a+18=6x210+18=1278(棵),
丙队植树为3a+3=3x210+3=633(棵)
【点睛】
本题考查了列代数式和代数式求值,正确掌握列代数式的方法和代入法是解题的关键.
22、(1)21;(2)4n+l;(3)2005元.
【分析】(1)根据题意构造出第五个图形的形状,数黑色正方形瓷砖的块数,即可得出答案:
(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 1+X集成电路理论试题库含答案
- 白水泥在智能家居产品设计中的运用
- 小升初经验交流发言稿
- 工厂安全发言稿100字左右
- 皮肤营养与老年人的健康关系
- 电子商务与实体店融合的运营模式
- 现代教育技术下的中小学教师角色转变
- 医院个人明年工作计划
- 珠宝品牌连锁经营中的风险控制
- 社交工程学基础与反诈策略概述
- GB/T 4365-2024电工术语电磁兼容
- 高校体育课程中水上运动的安全保障措施研究
- 山东省德州市2024-2025学年高三上学期1月期末生物试题(有答案)
- 油气勘探风险控制-洞察分析
- GB 12710-2024焦化安全规范
- 本人报废车辆委托书
- 2022年中考化学模拟卷1(南京专用)
- 双减政策与五项管理解读
- 过桥资金操作流程
- 货物学 课件1.2货物的特性
- 医疗机构质量管理指南
评论
0/150
提交评论