版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第89讲电磁感应中的框模型
I真题示例_______________________________
(多选)1.(2021∙甲卷)由相同材料的导线绕成边长相同的甲、乙两个正方形闭合线圈,
两线圈的质量相等,但所用导线的横截面积不同,甲线圈的匝数是乙的2倍。现两线圈
在竖直平面内从同一高度同时由静止开始下落,一段时间后进入一方向垂直于纸面的匀
强磁场区域,磁场的上边界水平,如图所示。不计空气阻力,已知下落过程中线圈始终平
行于纸面,上、下边保持水平。在线圈下边进入磁场后且上边进入磁场前,可能出现的是
()
××x×x×××
XXXXXXXX
×xxx××××
A.甲和乙都加速运动
B.甲和乙都减速运动
C.甲加速运动,乙减速运动
D.甲减速运动,乙加速运动
【解答】解:甲、乙两正方形线圈的材料相同,则它们的密度和电阻率相同,设材料的电
阻率为p,密度为P%:度,
两正方形线圈的边长相同,设线圈边长为L,设线圈的横截面积为S,线圈的质量m=p
密度X4nLS=4np密度LS,
由题意UJ知,两线圈的质量相等,则4n甲P福度LS甲=4n乙P密度LS乙,则n甲S甲=n乙S
乙,
两线圈在竖直平面内从同一高度同时由静止开始下落,设线圈下边到磁场的高度为h,
设线圈下边刚进入磁场时的速度为V,线圈进入磁场前做自由落体运动,
贝IJV=商元由于下落高度h相同,则线圈下边刚进入磁场时的速度V相等,
设线圈匝数为n,磁感应强度为B,线圈进入磁场过程切割磁感线产生的感应电动势E=
nBLv,
4nL
由电阻定律可知,线圈电阻:R=p—
由闭合电路的欧姆定律可知,感应电流:I=5=喘=察
线圈受到的安培力:F=nBIL=嚓生
由于nq,S甲=ncS乙,B、L、p、V都相同,则线圈进入磁场时受到的安培力F相同,线
圈质量相同,则它们受到的重力G=mg相同,
线圈进入磁场过程所受合力F合=F-G相同;
A、如果线圈进入磁场时安培力小于重力,则线圈受到的合力向下,线圈甲、乙都加速运
动,故A正确;
B、如果线圈进入磁场时安培力大于重力,线圈受到的合力向上,线圈甲、乙都做减速运
动,故B正确;
Cs由于甲、乙所受合力相同、进入磁场时的速度相同,如果甲加速运动,则乙也做加速
运动,故C错误;
D、由于甲、乙所受合力相同、进入磁场时的速度相同,如果甲减速运动,则乙也做减速
运动,故D错误。
故选:ABo
(多选)2.(2021•湖南)两个完全相同的正方形匀质金属框,边长为L,通过长为L的绝
缘轻质杆相连,构成如图所示的组合体。距离组合体下底边H处有一方向水平、垂直纸
面向里的匀强磁场。磁场区域上下边界水平,高度为L,左右宽度足够大。把该组合体在
垂直磁场的平面内以初速度Vo水平无旋转抛出,设置合适的磁感应强度大小B使其匀速
通过磁场,不计空气阻力。下列说法正确的是()
A.B与VO无关,与√77成反比
B.通过磁场的过程中,金属框中电流的大小和方向保持不变
C.通过磁场的过程中,组合体克服安培力做功的功率与重力做功的功率相等
D.调节H、Vo和B,只要组合体仍能匀速通过磁场,则其通过磁场的过程中产生的热
量不变
【解答】解:A、设组合体质量为m,每个金属框的电阻为R,进入磁场时的速度大小为
V,速度方向与水平方向夹角为0,竖直方向的速度大小为Vy,
组合体进入磁场前做平抛运动,则有Vy2=2gH,
又有Vy=VSino=j2gH
因金属框边长为L,连接杆长为L,磁场区域高度为L,可知在组合体穿过磁场的过程中
始终只有一条水平方向的边在磁场中,左右两竖直方向的边切割磁感线的速度相同,产
生的电动势相抵消,则
感应电动势E=BLvsinθ,
感应电流I=I
K
组合体所受安培力F次=BlL=身?生=BL尸,
组合体穿过磁场过程中受力平衡,则有F女=mg
解得:B2=,可见B2与√77成反比,B与不成反比,B与VO无关,故A错误;
B、由A选项分析可知,I=出*,则电流大小不变,组合穿过磁场过程磁通量先增加
后减小,再增加再减小,磁场方向垂直纸面向里不变,由楞次定律判断,感应电流方向先
逆时针后顺时针,再逆时针再顺时针,故B错误;
C、组合体匀速通过磁场的过程中,安培力始终与重力等大反向,克服安培力做功的功率
P=mgvy,即等于重力做功的功率,故C正确;
D、只要组合体匀速通过磁场,由能量守恒定律,可知产生的热量等于重力势能减少量,
即Q=4mgL,产生热量不变,故D正确。
故选:CDo
—,知识回顾
1.常见的框模型有三边框、四边框、五边框、圆形或半圆形框等,在磁场中产生的感应
电动势,有的是动生电动势,有的是感生电动势,有的是两种电动势同时产生。处理框模型,
有时需要画等效电路图,有时需进行受力分析和能量分析,有时是考查图像分析和处理能力,
因此,其综合性较强,需要的知识点较多。
2.电磁感应中的电路问题的基本步骤
(1)确定电源:先判断产生电磁感应现象的是哪一部分导体,该部分导体可视为电源。
(2)分析电路结构,画等效电路图。
(3)利用电路规律求解,主要有欧姆定律、串并联电路规律等。
3.电磁感应中的电路分析易错点:
(1)不能正确根据感应电动势或感应电流的方向分析外电路中电势的高低。因产生感应
电动势的那部分电路相当于电源,故该部分电路中的电流从低电势流向高电势,而外电路中
电流的方向是从高电势到低电势。
(2)应用欧姆定律分析求解电路时,没有考虑到电源的内阻对电路的影响。
(3)对连接在电路中电表的读数不能正确进行分析,例如并联在等效电源两端的电压表,
其示数是路端电压,而不是等效电源的电动势。
4.导体棒的动力学分析
电磁感应现象中产生的感应电流在磁场中受到安培力的作用,从而影响导体棒(或线圈)
的受力情况和运动情况。通常有两种状态及处理方法
状态特征处理方法
平衡态-加速度为零根据平衡条件列式分析
根据牛顿第二定律进行动态分析或结合功能关系进行分析,
非平衡态加速度不为零
注意加速度的变化及速度变化。
5.电磁感应中的能量转化及焦耳热的求法
(D能量转化
其他形式克服安培囤电流做功焦耳热或其他
的能量疗械功能"形式的能量
(2)求解焦耳热0的三种方法(纯电阻电路)
T焦耳定律:Q=/海I
焦耳热Q的
―T功能关系:O=W
三种求法
T能斌转化:Q=AEHliMI⅛M<M]
6.电磁感应中的图像问题
(1)图像类型
闭合■电路
欧姆定律
串、并联
电路知识
电功
'电
焦
功
率
、
用
定
律
(2)2.解题关键
①弄清物理量的初始条件和正负方向;
②注意物理量在进、出磁场时的变化;
③写出函数表达式。
(3)解题方法:先定性排除,再定量解析
①定性排除法:用右手定则或楞次定律确定物理量的方向,定性地分析物理量的变化趋
势、变化快慢、是否均匀变化等,特别注意物理量的正负和磁场边界处物理量的变化,通过
定性分析排除错误的选项。
②定量解析法:根据题目所给条件定量地推导出物理量之间的函数关系,然后由函数关
系对图像作出分析,由图像的斜率、截距等作出判断。
二.典型例题
题型一:三边框之动生电动势与感生电动势同时产生模型
(多选)例1.如图所示,在MN右侧区域有垂直于纸面向里的匀强磁场,其磁感应强度随
时间变化的关系为B=kt(k为大于零的常量)。一高为a、电阻为R的正三角形金属线
框向右匀速运动。在t=0时刻,线框底边恰好到达MN处;在t=T时刻,线框恰好完全
进入磁场。在线框匀速进入磁场的过程中()
B
××
××
X×
××
X×
A.线框中的电流始终为逆时针方向
B.线框中的电流先逆时针方向,后顺时针方向
C∙t=9寸刻,流过线框的电流大小为誓ɪ
D.t=g时刻,流过线框的电流大小为必会-
【解答】解:AB、磁场垂直于纸面向里,由右手定则可知,线框向右运动过程,感应电
流始终沿逆时针方向,故A正确,B错误;
CD、线框做匀速直线运动,线框的速度V=热t=彳时刻,线框切割磁感线的有效长度L
T√3
=2(a-vɪ)tan30o=-ɜ-a,
此时磁感应强度B=kt=∣kT,
动生电动势El=BLV=∣kT×*ax号=在普
由法拉第电磁感应定律可知,感生电动势E2=^=⅞⅞S=∕c×2×i×¾×α=在绊
∆C∆t4Z√34
由欧姆定律可知,感应电流I=绰”=2爵,故C错误,D正确。
KIZA
故选:ADo
题型二:四边框连接体之运动分析与能量转化
例2.如图所示,同一竖直面内的正方形导线框a、b的边长均为1,电阻均为R,质量分别
为2m和m。它们分别系在一跨过两个定滑轮的轻绳两端,在两导线框之间有一宽度为
21、磁感应强度大小为B、方向垂直竖直面的匀强磁场区域。开始时,线框b的上边与匀
强磁场的下边界重合,线框a的下边到匀强磁场的上边界的距离为1。现将系统由静止释
放,当线框b全部进入磁场时,a、b两个线框开始做匀速运动。不计摩擦和空气阻力,
则下列说法错误的是()
A.a、b两个线框匀速运动的速度大小为六
B2I2
3夕2/3
B.线框a从下边进入磁场到上边离开磁场所用时间为-----
mgR
C.从开始运动到线框a全部进入磁场的过程中,线框a所产生的焦耳热为mgl
D.从开始运动到线框a全部进入磁场的过程中,两线框共克服安培力做功为2mgl
【解答】解:A、设两线框匀速运动的速度为V,此时轻绳上的张力大小为T,则对a有
T=2mg-BIl
对b有T=mg,又I=率E=BIv,解得V=m骋,故A正确:
B、线框a从下边进入磁场后,线框a通过磁场时以速度V匀速运动,则线框a从下边进
入磁场到上边离开磁场所用时间为t=源鬻,故B正确;
C、从开始运动到线框a全部进入磁场的过程中,线框a只在其匀速进入磁场的过程中产
生焦耳热,设为Q,由功能关系有2mgl-Tl=Q,得Q=mgl,故C正确。
D、设两线框从开始运动至a全部进入磁场的过程中,两线框共克服安培力做的功为W,
此过程中左、右两线框分别向上、向下运动21的距离。对这一过程,由能量守恒定律有:
4mgl=2mgl+∣∙3mv2+W,得W=2mg1-,'"-受?",故D错误。
Z2B1
本题选错误的,
故选:D。
题型三:四边框之图像题
例3.如图所示,边长为L的单匝均匀金属线框置于光滑水平桌面上,在拉力作用下以恒定
速度通过宽度为D、方向竖直向下的有界匀强磁场,线框的边长L小于有界磁场的宽度
D,在整个过程中线框的ab边始终与磁场的边界平行,若以F表示拉力、以Uab表示线
框ab两点间的电势差、I表示通过线框的电流(规定逆时针为正,顺时针为负)、P表示
拉力的功率,则下列反映这些物理量随时间变化的图像中正确的是()
【解答】解:设线框每边电阻为R,线框的边长为L,线框的速度为V。
A、线框进入磁场过程,产生的感应电动势为E=BLV,线框中的电流为/=需,方向为
zr∏
逆时针方向(正方向),完全进入磁场时电流为零;离开磁场过程中,感应电流方向为为
顺时针方向(负方向),故A错误;
22
B、由于线框匀速运动,故拉力F大小为:F=F今=8〃=舞二拉力的功率为:P=
∙^iTIx
22人22
FU=51L,进出磁场时功率相同,线框完全进入磁场后,根据电流为零,功率为零,
itK
故B正确;
O2Z217
C、根据F=F安=B/L=可知,线框进出磁场时线框所受安培力均向左,大小恒定,
故拉力F均向右,大小恒定,当线框完全进入磁场后,线框完全进入磁场过程感应电流
为零,拉力应为0,故C错误;
D、线框进入磁场过程中,ab边相当于电源,ab两点间电压为路端电压,a、b两点间的
电势差为:Uab=I×3R=^BLvi
线框完全进入磁场过程中,ab间电势差为Uab=BLv;
线框离开磁场过程,线框中的电流为/=照,方向为顺时针方向(负方向),此过程中Cd
边相当于电源,ab只是外电路的一部分,a、b两点间的电势差为:Uab=IR=1BLv,
故D错误。
故选:Bo
题型四:四边框之动力学分析(应用电阻率与密度概念解决问题)
例4.由相同材料的导线绕成边长相同的甲、乙两个正方形闭合线圈,两线圈的质量相等,
但所用导线的横截面积不同,甲线圈的匝数是乙的2倍。现两线圈在竖直平面内从同一
高度同时由静止开始下落,一段时间后进入一方向垂直于纸面的匀强磁场区域,磁场的
上边界水平,如图所示。不计空气阻力,己知下落过程中线圈始终平行于纸面,上、下边
保持水平。在线圈下边进入磁场后且上边进入磁场前,可能出现的是()
甲□□乙
XXXXX
XXXXX
XXXXX
A.甲和乙都加速运动或减速运动
B.甲和乙做什么运动与线圈的横截面积和匝数有关
C.甲加速运动,乙减速运动
D.甲减速运动,乙加速运动
【解答】解:甲、乙两正方形线圈的材料相同,则它们的密度和电阻率相同,设材料的电
阻率为P,密度为P%度,
两正方形线圈的边长相同,设线圈边长为L,设线圈的横截面积为S,线圈的质量m=p
密度X4nLS=4np密度LS,
由题意可知,两线圈的质量相等,则4nFf∣p密度LS甲=4n乙P密度LS乙,则n甲S甲=n乙S
乙,
两线圈在竖直平面内从同一高度同时由静止开始下落,设线圈下边到磁场的高度为h,
设线圈下边刚进入磁场时的速度为V,线圈进入磁场前做自由落体运动,则V=J可,
由于下落高度h相同,则线圈下边刚进入磁场时的速度V相等。
设线圈匝数为n,磁感应强度为B,线圈进入磁场过程切割磁感线产生的感应电动势E=
nBLv,
由电阻定律可知,线圈电阻:R=P∙华
由闭合电路的欧姆定律可知,感应电流:I=W=嗡=鬻
线圈受到的安培力:F=nBIL=嚓生
由于n甲S甲=n乙S乙,L、p、V都相同,则线圈进入磁场时受到的安培力F相同,
根据牛顿第二定律可得加速度大小为:a=胃型=3-。,线圈质量相同,则加速度大
小相同。
如果线圈进入磁场时安培力小于重力,则线圈受到的合力向下,线圈甲、乙都加速运动,
如果线圈进入磁场时安培力大于重力,线圈受到的合力向上,线圈甲、乙都做减速运动,
甲和乙做什么运动与线圈的横截面积和匝数无关,故BCD错误,A正确。
故选:Ao
题型五:五边框之图像问题
(多选)例5.(2020∙山东)如图所示,平面直角坐标系的第一和第二象限分别存在磁感应
强度大小相等、方向相反且垂直于坐标平面的匀强磁场,图中虚线方格为等大正方形。
一位于OXy平面内的刚性导体框abcde在外力作用下以恒定速度沿y轴正方向运动(不
发生转动)。从图示位置开始计时,4s末be边刚好进入磁场。在此过程中,导体框内感
应电流的大小为I,ab边所受安培力的大小为Fab-二者与时间t的关系图象可能正确的
是()
B.
D
【解答】解:AB、因为4s末be边刚好进入磁场,可知线框的速度为每秒向上运动一格,
故在O-IS内只有ae切割磁感线,设方格边长L,根据
Eι=2BLv可知电流恒定;
2s末时线框在第二象限长度最长,此时
E2=3BLV
这时电流
可知,
故A错误,B正确;
CD、ab受到安培力Fab=BILab,
可知在O-IS内ab边受到安培力线性增加;IS末安培力为Fab=BIiL,
2s末安培力FaJ=BXl/1X2L,
所以Fab'=3Fab,由图象知,C正确,D错误。
故选:BCo
三.举一反三,巩固练习
1.如图,从匀强磁场中把不发生形变的矩形线圈匀速拉出磁场区,若两次拉出的速度之比
为1:2,则两次线圈所受外力大小之比Fi:F2为()
XXX
XX
XXX
A.Fl:F2=2:1B.F∣:F2=I:2C.Fi:F2=I:4D.F∣:F2=I:1
【解答】解:设线圈左右两边边长为L,整个线圈的电阻为R,磁场的磁感应强度为B。
线圈产生的感应电动势为:E=BLv
感应电流为:I=EK=喀K
22
线圈所受的安培力为:F支培=BlL=粤上
K
22
线圈做匀速直线运动,由平衡条件得线圈所受外力大小:F=F安培=竺RI尹
可知,F0=v,则得:Fi:F2=VI:V2=I:2,故ACD错误,B正确。
故选:Bo
2.如图所示,光滑绝缘水平面上有一正方形导线框abed,虚线右侧是匀强磁场区域,磁场
场方向竖直向下∙t=0时,导线框Cd边恰与磁场左边界重合,在水平外力F作用下由
静止开始向右运动,外力F与导线框速度V的关系是F=Fo+kv(Fo、k是常量)。在导
线框进入磁场的过程中,关于感应电流i与时间t的关系,下列图像中不可能的是()
【解答】解:设线框的边长为L、电阻为R、质量为m,磁场的磁感应强度为B,当线框
p2J2
的速度为V时,安培力的大小为尸安=B辽=幺”
此时线框的加速度为α==至=常+(ICR嚏2)”,若k=字,则有α=需为一个
定值,感应电流i=等=喀3则有i与t成正比;
KK
22
若k>%则加速度a随着速度的增大而增大,感应电流i=等=等t,i-t图象的
斜率增大;
若AV噂,则加速度a随着速度的增大而减小,感应电流i=等=等3i-t图象的
KKK
斜率减小;综上所述,故ACD正确,B错误;
本题选图像中不可能的是,
故选:Bo
3.两个完全相同的正方形匀质金属框,边长为L,通过长为L的绝缘轻质杆相连,构成如
图所示的组合体。距离组合体下底边H处有一方向水平、垂直纸面向里的匀强磁场。
磁场区域上下边界水平,高度为L,左右宽度足够大。把该组合体在垂直磁场的平面内
以初速度VO水平无旋转抛出,设置合适的磁感应强度大小B使其匀速通过磁场,不计
空气阻力。下列说法正确的是()
X×
XX
A.B与Vo无关,与√77成反比
B.通过磁场的过程中,金属框中电流的大小和方向保持不变
C.通过磁场的过程中,组合体克服安培力做功的功率大于重力做功的功率
D.调节H、Vo和B,只要组合体仍能匀速通过磁场,则此过程中产生的热量不变
【解答】解:A、设组合体质量为m,每个金属框的电阻为R,进入磁场时的速度大小为
V,速度方向与水平方向夹角为0,竖直方向的速度大小为Vy。
组合体进入磁场前做平抛运动,则有Vy2=2gH,又有Vy=VSine=yj2gH
因金属框边长为L,连接杆长为L,磁场区域高度为L,可知在组合体穿过磁场的过程中
始终只有一条水平方向的边在磁场中,左右两竖直方向的边切割磁感线的速度相同,产
生的电动势相抵消,则金属框产生的感应电动势为E=BLVSin。,感应电流为I=E,组合
体所受安培力F,=BIL=的孕㈣=B汨留
组合体穿过磁场过程中受力平衡,则有F女=mg
解得:B2=4≠=,可见B2与√77成反比,B与√77不成反比,B与VO无关,故A错误;
2
Ly∣2gH
B、由A选项分析可知,I=吗咽,则电流大小不变,组合穿过磁场过程磁通量先增加
后减小,再增加再减小,磁场方向垂直纸面向里不变,由楞次定律判断,感应电流方向先
逆时针后顺时针,再逆时针再顺时针,故B错误;
C、组合体匀速通过磁场的过程中,安培力始终与重力等大反向,克服安培力做功的功率
P=mgvy,即等于重力做功的功率,故C错误;
D、只要组合体匀速通过磁场,由能量守恒定律,可知产生的热量等于重力势能减少量,
即Q=4mgL,产生热量不变,故D正确。
故选:D..
4.如图所示,单匝正方形金属线圈ABCD在外力F作用下以速度V向右匀速进入匀强磁
场,第二次又以速度2v匀速进入同一匀强磁场,则()
XXX
B
X-XX
LJX
XX×
A.两次产生的感应电流大小之比为1:4
B.两次施加的外力F大小之比为1:4
C.两次线圈中产生的热量之比为1:2
D.两次线圈受外力F的冲量大小之比为1:2
【解答】解:A、设磁感应强度为B,线圈的边长为L,线圈电阻为R,线圈进入磁场过
程中,产生的感应电动势为:E=BLV
感应电流为/=苓=竿
可知感应电流I与速度V成正比,第二次进入与第一次进入时线圈中电流之比等于速度
之比,即12:li=v:2v=l:2,故A错误;
B、线圈进入磁场时受到的安培力为:
22
线圈做匀速直线运动,由平衡条件得,外力F/=F=旦尹,两次施加的外力F大小之
比为1:2,故B错误;
C、线圈进入磁场过程中产生的热量Q=I2Rt=(华)2R∙S=彗囱
所以两次线圈中产生的热量之比为1:2,故C正确;
D、外力F的冲量大小为:
I=Ft="尹•£=罕相同,所以两次线圈受外力F的冲量大小为1:1,故D错误;
故选:Co
5.如图所示,均匀导体围成等腰闭合三角形线圈abc,底边与匀强磁场的边界平行,磁场
的宽度大于三角形的高度.线圈从磁场上方某一高度处由静止开始竖直下落,穿过该磁
场区域,不计空气阻力.下列说法中正确的是()
A.线圈进磁场的过程中,可能做匀速直线运动
B.线圈底边进、出磁场时,线圈的加速度必定相同
C.线圈底边进、出磁场时,线圈所受安培力可能大小相等、方向不同
D.线圈出磁场的过程中,可能做先减速后加速的直线运动
【解答】解:A、如果匀速,因为有效切割长度越小来越小,安培力会越来越小,不可能
匀速运动,故A错误;
D、如果线圈比较高,而磁场的宽度比等腰三角形的高要大,因面线框进入磁场后先减速
后加速,可能导致进磁场的速度和出磁场的速度是一样的,故DLE确;
p2r2
B、由切割磁感线产生感应电动势和安培力可求得:F发=BlL="尹,速度一样,安培
力一样,根据牛顿第二定律:mg-F安=ma,加速度也可能一样,但不是必定,故B错
误;
p2J2
C、由B选项可知,安培力F安=色/,而安培力总是阻碍相对运动,所以大小可能相
K
等,但方向均竖直向上,故C错误。
故选:D。
6.如图所示,两个完全相同的闭合矩形导线框甲和乙,质量为m,长边长2L,短边长L,
电阻为R,在其下方某一区域存在垂直于纸面向里的匀强磁场。已知乙线框由底边距磁
场上边界h处静止释放,恰好能匀速进入磁场。不计空气阻力,重力加速度为g,则下
列判断正确的是()
甲乙
×××XX×X
××××X×X
×××XX×X
XXXXXXX
A.甲线框要匀速进入磁场,应由底边距磁场上边界4h处自由释放
B.甲、乙线框匀速进入磁场过程中运动时间之比为2:1
3a
C.如甲也从底边距磁场上边界高度h处静止释放,则甲刚进入磁场时加速度大小为上
4
D.如甲从距磁场上边界高度h处静止释放,在进入磁场过程中产生的热量Q满足:Q
m3g2R2
≤mg(2L÷h)—
2β4L4
【解答】解:A、线框进入磁场前做自由落体运动,乙线框进入磁场时的速度为V,根据
动能定理
12
mghu=Inw"
解得:V=y∣2gh
线框进入磁场时受到的安培力
F=B1∙2L=⅛⅛
K
因为匀速运动,则有
mg-F=O
对于甲线框,令由底边距磁场上边界%处自由释放,恰好匀速进入磁场,根据动能定理
mghι=^mv2
解得:Vi=yj2gh1
线框进入磁场时受到的安培力
F=BIL=
R
因为匀速运动,则有
mg-F,=0
联立可得:vι=4v,hι=16h,故A错误;
B、甲线框匀速进入磁场过程中运动时间为
口
%
乙线框匀速进入磁场过程中运动时间为
t=L
一V
则甲、乙线框匀速进入磁场过程中运动时间之比为
t':t=l:2,故B错误;
C、如甲从底边距磁场上边界高度h处静止释放,根据动能定理
mgh,=12
解得:v=y∕2gh
线框进入磁场时受到的安培力
根据牛顿第二定律
mg-F=ma
联立以上解得:a=∣g,故C正确:
D、如甲从距磁场上边界高度h处静止释放,若在磁场中匀速通过则有
根据能量守恒可得在进入磁场过程中产生的热量
Q=mg(2L+h)-^mv2
由A分析可知甲线框进场过程中将会加速运动,即进场最终速度可能会小于或等于V,
所以产生的热量
Q》mg(2L+h)-ɪ/nv2
即Q》mg(2L+h)—-~⅛-故D错误。
2B4L*
故选:Co
7.某同学研究电磁阻尼效果的实验示意图如图甲所示,虚线M右侧有垂直于水平面向下
的匀强磁场,边长为1m、质量为0.1kg、电阻为0.2。的正方形金属线框在光滑绝缘水
平面上以大小v0-2m∕s的速度向右滑动并进入磁场,磁场边界MN与线框的右边框平
行。从线框刚进入磁场开始计时,线框的速度V随滑行的距离X变化的规律如图乙所
示,下列说法正确的是()
M▲v∕(m∙Γ1)
Ic
××2L
!××>
I
4×X>…__
______;×X>(XX1
(××0∣~⅛—
;×X>
I
N
甲乙
A.图乙中Xo=O.5m
B.线框进入磁场的过程中,线框的加速度先不变再突然减为零
C.线框进入磁场的过程中,线框中产生的焦耳热为O∙1J
D.线框进入磁场的过程中,通过线框某横截面的电荷里为三c
【解答】解:A、线框中的磁通量变化时,线框中会产生感应电流,线框会受到力的作用,
从而速度发生改变,当线框完全进入磁场时,磁通量不变,不产生感应电流,线框的速度
就不变,所以图乙中的XO=Im,故A错误;
B、线框进入磁场过程中,安培力为F=BlL="/,由图乙可知,速度减小,则安培力
减小,由牛顿第二定律可知,线框的加速度减小,由此线框做加速度减小的减速运动,故
B错误;
C、根据能量守恒可得,减少的动能全部转化为焦耳热,则有:Q=品诏TnW2,代入
数据可得:Q=0.15J,故C错误;
D、线框进入磁场过程中,取水平向右为正,根据动量定理可得:-BlLt=mv-mvo,
B2LzVtR2∕
即:------=mvo-mv,其中万t=x,解得:V=VO-----∏-
RmR
结合图像乙可知,当X=Im时,V=Irn∕s,代入解得:B=J^T=含T
通过线框截面的电量为:q=7t=5t=竿=嗒,代入数据解得:q=孝C,故D正确。
故选:D=
8.(多选)磁悬浮列车是高速低耗交通工具,如图甲所示。它的驱动系统可简化为如图乙
所示的物理模型。固定在列车底部的正方形金属线框的边长为L,匝数为N,总电阻为
R:水平长直轨道间各边长为L的正方形区域内都存在匀强磁场,磁场的磁感应强度大
小均为B、相邻区域的磁场方向相反。当磁场以速度V匀速向右运动时,可驱动停在轨
道上的列车,不能忽略列车受到的阻力,以下说法正确的是()
A.列车的最大速度小于V
B.列车的最大速度为V,列车运动的方向与磁场运动的方向相反
4NBL2
C.列车相对磁场位移为L的过程中通过线框的电荷量为/—
222
D.列车速度为v'时线框受到的安培力大小为-4-N--B-广L——(V-V-)
【解答】解:A、金属框达到最大速度V时一,金属框受力平衡,感应电流稳定,相对于磁
场的速度稳定,只有最大速度小于磁场的速度,才可能有切割磁感线,故AlE确;
B、由左手定则可知,线框所受安培力方向向右,线框向右运动,列车的运动方向与磁场
移动的方向相同,故B错误;
C、列车相对磁场运动L时,通过线框的电荷量q=7XZJt="At=等X戊=半,
故C正确;
D、列车受到为v'时线框相对于磁场的速度大小为V-v',方向向左,线框的左右两边
都切割磁感线产生感应电动势,感应电动势大小E=2NBL(v-v'),由闭合电路的欧姆
定律可知,感应电流I=今列车速度为娟时线框受到的安培力大F=2NBIL,解得:F=
4/5,故D正确。
K
故选:ACDo
9.(多选)如图所示,水平线MN下方有垂直纸向里的匀强磁场,磁场的磁感应强度大小
为B,边长为L、质量为m、电阻为R的正三角形金属线框ACD在MN上方由静止释
放,释放时,AC边离MN的高度为h,线框在向下运动过程中,始终在垂直磁场的竖
直面内,AC边始终水平,当AC边刚要进磁场时,线框的加速度为零,重力加速度为
g,贝IJ()
D
M-.......二…P-N
XXXXXX
XXXXXX
XXXXXX
XXXXXX
XXXXXX
A.线框进磁场过程可能一直做减速运动
√3BL2
B.线框进磁场过程中,通过线框截面的电量为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论