




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第四章回归分析逐步回归分析1第1页,课件共48页,创作于2023年2月最优回归方程的问题寻求最优回归方程的问题在有p个自变量的情况下,根据自变量的不同组合可能建立2p-1个回归方程。这些回归方程的效果有好有坏,而人们希望的是回归效果最好的,即“最优”的回归方程最优回归方程的要求回归效果最佳自变量的个数最少选择一个最佳的变量组合一方面对因变量起显著作用的自变量都选进回归方程,另一方面对因变量作用不显著的自变量都剔除回归方程,2第2页,课件共48页,创作于2023年2月选择最优回归方程的方法方法一:穷尽法从所有可能的变量组合中,选择其中最优的回归方程这种方法一定能选出一个最优组合,但工作量特别大方法二:逐步剔除法基本步骤:从包含全部p个自变量组合的回归方程中逐个检验回归系数,剔除对因变量作用不显著的自变量;对剔除后剩下的q个自变量建立对因变量的多元回归方程,再逐个检验回归系数,剔除不显著的变量;重复上述步骤,直到保留在回归方程中自变量的作用都显著为止缺点:一开始把全部自变量都要引入回归方程,计算量很大,实际上有些不重要的就不必引入3第3页,课件共48页,创作于2023年2月方法三:逐步引入法(1)基本步骤:①先逐个比较xl,…,xp对y的回归方程那些是显著的,从显著的方程中挑选F值最大的,相应的自变量x
就被“引入”方程。无妨设x
就是x1②再逐个比较(x1,x2)、(x1,x3)、…、(x1,xp)对y的回归方程,看有没有F值显著的,此时的F就是考虑添加xi之后,xi的回归系数是否显著地不为0,将显著的F中最大的F所相应的变量“引入”方程。无妨设第二次“引入”的自变量是x2③再考察以x1、x2为基础,逐个添加x3、x4、…、xp之后的回归方程,是否较x1、x2的方程有显著的改进,有就再“引入”新的自变量……,这样下去,终于到某一步就没有可以再“引入”的自变量了。这时就获得了最后的回归方程4第4页,课件共48页,创作于2023年2月方法四:逐步回归分析方法按照自变量对因变量所起作用的显著程度,从大到小逐个地引入回归方程当每一变量引入以后,若先前已经引入的变量由于后来变量的引入而使其作用变得不显著时,就及时从回归方程中剔除出去,直到作用显著的变量都引入到回归方程,而作用不显者的变量都剔出回归方程,得到一个最佳的变量组合为止(2)“逐步引入“法的缺点:不能反映后来变化的状况,设想x1、x2、x3引入后,又引入了x6,也许x3、x6引入后,x1的作用就不重要了,应该予以剔除,而“逐步引入”法不能达到这个要求5第5页,课件共48页,创作于2023年2月逐步回归分析的几个问题一、建立标准正规方程组二、变量的引入、剔除与消去法的关系6第6页,课件共48页,创作于2023年2月一、建立标准正规方程组为了分辨p个自变量对因变量Y所起影响(或作用)的大小,一个自然的想法是比较各自变量回归系数
(j=1,2,…,p)的绝对值的大小。根据回归系数的含义,Xj的回归系数
是在其余p-1个自变量保持不变的条件下,Xj改变一个单位所引起Y
平均变化的大小。因而回归系数绝对值的大小反映了它所代表的因素的重要程度由于回归系数和自变量所取的单位(或数量级)有关,而各个自变量取不同的量纲的情况是常见的,因而不能将回归系数直接进行比较7第7页,课件共48页,创作于2023年2月建立标准正规方程组为了消除这个影响,对自变量和因变量都要加以标准化标准化的方法经过标准化的变量,其均值为0,标准离差Lxjxj为1事实上,8第8页,课件共48页,创作于2023年2月标准正规方程组由标准化数据建立的正规方程组的系数矩阵即为变量间的相关系数矩阵,称为标准化正规方程组标准化正规方程组为:9第9页,课件共48页,创作于2023年2月标准正规方程组标准化正规方程组的解称为标准回归系数,其常数项为0由于因变量也进行了标准化,其总离差平方和Lyy=1求解标准化正规方程组还需要解决以下两个问题①引入变量和剔除变量的标准;②引入变量与剔除变量的方法。10第10页,课件共48页,创作于2023年2月二、变量的引入、剔除与消去法的关系假定已有l个自变量引入到回归方程,即相应的平方和分解公式是为了表明U和Q与引入的自变量是有关的,分别用符号U(x1,…,xl)和Q(x1,…,xl)表示11第11页,课件共48页,创作于2023年2月当增加一个自变量xi(i=l+1,…,p)后,有了新的回归方程,相应的平方和分解公式是原来的分解公式是注意到上两式左端Lyy是一样的,当xi引入后,回归平方和从U(x1,…,xl)增加到U(x1,…,xl,xi),而残差平方和从Q(x1,…,xl)降到Q(x1,…,xl
,xi)12第12页,课件共48页,创作于2023年2月因此,有记
ui就是回归方程中引入xi后对回归平方和的贡献,即偏回归平方和,且有13第13页,课件共48页,创作于2023年2月经F
检验,当xi作用显著时,可将其引入。同理,如果xi原来已经在回归方程中,若检验后其作用不显著,可及时从回归方程中剔除出去。利用统计量因此,取剔除和引入变量xi的标准相同,即14第14页,课件共48页,创作于2023年2月在逐步回归中引入一个变量与剔除一个变量都涉及变换,变换公式相同,采用求解求逆紧凑格式在第s次对第k列消去的变换公式是:二、变量的引入、剔除与消去法的关系15第15页,课件共48页,创作于2023年2月由相关矩阵构成的系数矩阵中,第i个变量的偏回归平方和ui(s)为:由可推倒出来ui(s)为下一步引进变量的指标,每一步引入都是从未出现在回归方程的剩余变量中挑选ui(s)的最大者进行上述变换后,回归分析中的剩余平方和Q的值即为系数矩阵中ryy位置所得的结果。即有,(证明)16第16页,课件共48页,创作于2023年2月式中,l为先前已经引入到回归方程中的变量个数,Fi服从F(1,n-l-2)分布。如果已引进的变量中有不显著的,则选其最不显著者作剔除变换,然后再检验。在未引入的变量中检验有无回归显著的变量,若有,则挑选最显著的作引入的消去变换,然后再检验。反复进行,直到没有变量可以引进,也没有变量可以从方程中剔除为止。构造检验统计量17第17页,课件共48页,创作于2023年2月用消去法求解正规方程组的过程二、变量的引入、剔除与消去法的关系当消去正规方程组系数矩阵的第一列时,常数项列的第一个数就是只有x1这一个自变量情况下所建立的回归方程的回归系数这是因为:当回归方程只有一个自变量时,表明其他自变量在多元回归方程中的回归系数为0。因此,正规方程的常数项部分就是该变量的解,即回归系数。18第18页,课件共48页,创作于2023年2月二、变量的引入、剔除与消去法的关系第二次消去了正规方程组系数矩阵的第一、二两列时,常数项列中的第一、二两个数即为只有x1,x2两个自变量情况下所建立回归方程的回归系数
和
依次类推,得到引入的各个自变量的回归系数系数矩阵中每消去一列,等价于回归方程中引入一个新的变量,而且与变量排列的顺序无关。19第19页,课件共48页,创作于2023年2月由相关系数矩阵得到的回归系数是标准回归系数,如果要把它化为一般回归系数两者关系为:其中Lii和LYY为变量Xi和Y的方差。二、变量的引入、剔除与消去法的关系推导20第20页,课件共48页,创作于2023年2月三、例题分析【例】某种水泥在凝固时,放出的热量Y(卡/克)与水泥中下列4种成分有关:
X1:铝酸三钙
X2:硅酸三钙
X3:铁铝硅四钙
X4:硅酸二钙通过试验,取得数据资料如右所示:编号X1X2X3X4Y12345678910111213711111711312211111026295631525571315447406668615886917221842398605220473322644222634121278.574.3104.287.695.9109.2102.772.593.1115.983.8113.3109.421第21页,课件共48页,创作于2023年2月说明:按第一种方法选最优,全部可能的回归方程有C41+C42+C43+C44=15个计算各要素之间的相关系数,得到相关系数矩阵R(0)准备工作:22第22页,课件共48页,创作于2023年2月根据本例资料,算出从矩阵R(0)中可以看出:x1与x2两因子不相关,x2与x4、x1与x3之间关系密切,x3与y关系不太密切,x4与y最相关23第23页,课件共48页,创作于2023年2月逐步回归步骤:计算公式:t-变换步数第一步(t=1)
①选择第一个变量进入回归方程对所有4个变量,按下面公式计算偏回归平方和←当变量引入回归方程后24第24页,课件共48页,创作于2023年2月计算结果为:比较4个ui(1),可知第4个因子的偏回归值最大,即x4对y的回归贡献最大,于是优先考虑选入x425第25页,课件共48页,创作于2023年2月②引入因素的显著性检验其中,分子的自由度是1,l为方程中的变量个数求解回归方程时,若对资料进行标准化处理,可以证明:统计量26第26页,课件共48页,创作于2023年2月当引入第一个因子时,l=1故则统计量于是由于F4(1)>F0.05(1,11)=4.84,表明引入的因子x4对回归方程的贡献是显著的,应将x4引入方程。27第27页,课件共48页,创作于2023年2月③矩阵R(0)的高斯-亚当变换(紧凑变换方式)以x4为主元进行矩阵变换(x4刚刚引入方程),变换公式如下a.非主元所在行、列b.主元所在行(除主元)c.主元所在列(除主元)d.主元变换过程要求按a→d顺序进行。28第28页,课件共48页,创作于2023年2月记变换后的矩阵为R(1),(t=1)解29第29页,课件共48页,创作于2023年2月④x4引入回归方程后的结果标准回归系数(利用标准化数据求得的回归系数)为:剩余平方和回归方程的标准形式为:其中l=1,表明方程只引入一个变量30第30页,课件共48页,创作于2023年2月回归方程的一般形式为:一般回归系数为:常数项为31第31页,课件共48页,创作于2023年2月第二步(t=2)①选择第二个变量进入回归方程计算偏回归平方和ui(2)(i=1,2,3)(利用R(1)对不在回归方程中的每个变量做计算)其中以u1(2)=0.2980最大,故最优先考虑x1引入回归方程(能否引入方程要做检验)。☆7A32第32页,课件共48页,创作于2023年2月②引入变量的检验(引入检验)偏回归系数检验式中,分母表示x1引入回归方程后,剩余平方和等于只包含x4一个变量时的剩余平方和减去x1引入回归方程而使回归平方和增大的部分。由于F1(2)>F0.05(1,10)=4.96,因此x1应引入回归方程中。将x1引入,方程中有两个因子,即l=233第33页,课件共48页,创作于2023年2月③矩阵R(1)的高斯-亚当变换记变换后的矩阵为R(2)④引入因子x1后,对原有因子x4重新检验(偏回归检验)←剔除检验因为F4(2)>F0.05(1,10),因此x4不应从方程中剔除。
*(2)解*(2)
解即以x1的回归方程引入x4后的偏回归显著性检验,其中,x1的回归贡献为0.5339,而x4的偏回归贡献为0.4385的,合计为0.972434第34页,课件共48页,创作于2023年2月⑤将x1引入回归方程的结果标准回归系数:回归方程的一般形式:剩余平方和:35第35页,课件共48页,创作于2023年2月第三步(t=3)①选择第三个变量引入回归方程计算偏回归平方和ui(3)(i=2,3)(利用R(2)对不在回归方程中的每个变量做计算)其中u2(3)>u3(3),变量x2的偏回归平方和最大,选择x2②引入检验偏回归系数检验36第36页,课件共48页,创作于2023年2月③矩阵R(2)的高斯-亚当变换引入x2,以r22(2)为主元进行,记变换后的矩阵为R(3)④引入x2后,对原有因子x1、x4重新检验(l=3)←剔除检验
*(3)解
*(3)解
*(3)解上式表示,以x2为自变量的方程,再引入x1、x4后,产生的偏回归贡献37第37页,课件共48页,创作于2023年2月其中u4(3)较小,计算由于,因此,应把x4从回归方程中剔除。说明:由于因子x2的引入,造成变量x4的显著性大大降低,回归方程中变量x4的存在是多余的,予以剔除。38第38页,课件共48页,创作于2023年2月⑤矩阵R(3)以r44(3)为主元做高斯-亚当变换,记变换后的矩阵为R(4)
*(4)解
*(4)解39第39页,课件共48页,创作于2023年2月⑥剔除x4后,再检验x1、x2因由于均大于F
=4.10,所以x1、x2均不剔除。40第40页,课件共48
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论