版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆璧山中学校高二数学理摸底试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.命题p:若a>b,则ac2>bc2;命题q:?x0>0,使得x0﹣1+lnx0=0,则下列命题为真命题的是()A.p∧q B.(¬p)∧q C.p∨(¬q) D.(¬p)∧(¬q)参考答案:B【考点】复合命题的真假.【分析】分别判断出命题p,q的真假,从而判断出符合命题的真假即可.【解答】解:若a>b,则推不出ac2>bc2,c=0时,不成立,故命题p是假命题;显然?x0=1>0,使得x0﹣1+lnx0=0,故命题q是真命题;故(¬p)∧q是真命题,故选:B.2.已知集合,若,则-------(
)A.
B.
C.
D.不能确定参考答案:C略3.下列不等式中正确的有(
)①;②;③A.①③ B.①②③ C.② D.①②参考答案:B【分析】逐一对每个选项进行判断,得到答案.【详解】①,设函数,递减,,即,正确②,设函数,在递增,在递减,,即,正确③,由②知,设函数,在递减,在递增,,即正确答案为B【点睛】本题考查了利用导函数求函数的单调性进而求最值来判断不等式关系,意在考查学生的计算能力.4.对任意非零实数a,b,若a※b的运算原理如图所示,则※=(
)A.1 B.2 C.3 D.4参考答案:A分析:由程序框图可知,该程序的作用是计算分段函数函数值,由分段函数的解析式计算即可得结论.详解:由程序框图可知,该程序的作用是计算分段函数函数值,因为,故选A.点睛:算法是新课标高考的一大热点,其中算法的交汇性问题已成为高考的一大亮,这类问题常常与函数、数列、不等式等交汇自然,很好地考查考生的信息处理能力及综合运用知识解决问題的能力,解决算法的交汇性问题的方:(1)读懂程序框图、明确交汇知识,(2)根据给出问题与程序框图处理问题即可.5.下列函数为偶函数的是()A.y=sinx
B.y=x3
C.y=ex
D.参考答案:D略6.运行如图的程序,若x=1,则输出的y等于()A.8 B.7 C.6 D.5参考答案:C【考点】程序框图.【专题】计算题;图表型;函数思想;分析法;算法和程序框图.【分析】模拟执行程序,可得程序的功能是计算并输出y=x^3+5的值,代入x的值,即可求解.【解答】解:模拟执行程序,可得程序的功能是计算并输出y=x^3+5的值,当x=1,可得y=1+5=6.故选:C.【点评】本题主要考查了赋值语句,理解赋值的含义是解决问题的关键,属于基础题.7.
参考答案:A8.与,两数的等比中项是(
)A.1
B.
C.
D.参考答案:C9.等差数列{an}的前n项和为Sn,且,则公差d=(
)A.-3
B.3
C.-2
D.2参考答案:A10.过抛物线y2=2px(p>0)的焦点F的直线与双曲线x2﹣=1的一条渐近线平行,并交抛物线于A,B两点,若|AF|>|BF|,且|AF|=2,则抛物线的方程为()A.y2=2x B.y2=3x C.y2=4x D.y2=x参考答案:A【考点】抛物线的简单性质.【分析】根据抛物线的定义和双曲线的定义,不妨设直线AB为y=(x﹣),设A(x0,y0)得到|AF|=x0+,表示出x0,y0,代入到抛物线的解析式,求出p的值,需要验证【解答】解:抛物线y2=2px(p>0)的焦点F的坐标为(,0),准线方程为x=﹣,双曲线x2﹣=1的渐近线方程为y=x,由于过抛物线y2=2px(p>0)的焦点F的直线与双曲线x2﹣=1的一条渐近线平行,并交抛物线于A,B两点,不妨设直线AB为y=(x﹣),设A(x0,y0),∴|AF|=x0+,∵|AF|>|BF|,且|AF|=2,∴x0=2﹣,x0>,∴0<p<2∴y0=(2﹣p),∴3(2﹣p)2=2p(2﹣),整理得p2﹣4p+3=0,解的p=1或p=3(舍去),故抛物线的方程为y2=2x,故选:A.【点评】本题考查了直线和抛物线的关系,以及抛物线和双曲线的定义和性质,属于中档题.二、填空题:本大题共7小题,每小题4分,共28分11.已知x、y满足约束条件,则z=x+3y的最小值为
.参考答案:2【考点】简单线性规划.【分析】作出题中不等式组表示的平面区域,得到如图的△ABC及其内部,再将目标函数z=x+3y对应的直线进行平移,观察直线在y轴上的截距变化,可得当x=y=时z取得最小值2.【解答】解:作出不等式组表示的平面区域,得到如图的△ABC及其内部,其中A(0,1),B(2,2),C(,).设z=F(x,y)=x+3y,将直线l:z=x+3y进行平移,观察直线在y轴上的截距变化,可得当l经过点C时,目标函数z达到最小值.∴z最小值=F(,)=2.故答案为:212.若则下列不等式①;②;③;④中,正确的不等式有__
参考答案:①④13.双曲线x2﹣y2=1的渐近线方程为
.参考答案:y=±x
【考点】双曲线的简单性质.【分析】由双曲线=1的渐近线方程为y=x,即可得到所求渐近线方程.【解答】解:由双曲线=1的渐近线方程为y=x,则双曲线x2﹣y2=1的渐近线方程为y=±x.故答案为:y=±x.【点评】本题考查双曲线的方程和性质,考查渐近线方程的求法,属于基础题.14.不等式在R上的解集为,则的取值范围是_________.参考答案:略15.已知,则
.参考答案:略16.直线互相垂直,则的值是
参考答案:m=0,m=
略17.已知复数z为纯虚数,且z(2+i)=1+ai,则实数a的值为
.参考答案:﹣2【考点】A5:复数代数形式的乘除运算.【分析】复数z为纯虚数,设z=xi(x∈R,x≠0).代入利用复数的运算法则即可得出.【解答】解:复数z为纯虚数,设z=xi(x∈R,x≠0).∵z(2+i)=1+ai,∴xi(2+i)=1+ai,∴2xi﹣x=1+ai,∴,解得a=﹣2.故答案为:﹣2.【点评】本题考查了复数的运算法则、纯虚数的定义、方程的解法,考查了推理能力与计算能力,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.函数f(x)=x3+ax2+bx+c在与x=1时都取得极值(1)求a,b的值;(2)函数f(x)的单调区间.参考答案:【考点】函数在某点取得极值的条件;利用导数研究函数的单调性.【分析】(1)求出f′(x)并令其=0得到方程,把x=﹣和x=1代入求出a、b即可;(2)求出f′(x),分别令f′(x)<0,f′(x)>0,求出x的范围,即可得到函数f(x)的单调区间.【解答】解:(1)f′(x)=3x2+2ax+b,由题意:即解得(2)由(1)可知f(x)=x3﹣x2﹣2x+c
∴f′(x)=3x2﹣x﹣2令f′(x)<0,解得﹣<x<1;令f′(x)>0,解得x<﹣或x>1,∴f(x)的减区间为(﹣,1);增区间为(﹣∞,﹣),(1,+∞).19.已知数列满足:,其中为数列的前项和.(1)试求的通项公式;(2)若数列满足:,试求的前项和.参考答案:略20.已知中心在坐标原点O的椭圆C经过点,点.(1)求椭圆C的方程;(2)已知圆,双曲线与椭圆有相同的焦点,它的两条渐近线恰好与圆相切,求双曲线的方程.参考答案:解:(1)依题意,可设椭圆C的方程为,从而有解得
故椭圆C的方程为
(2)椭圆C:+=1的两焦点为F1(-5,0),F2(5,0),故双曲线的中心在原点,焦点在x轴上,且c=5.设双曲线G的方程为-=1(a>0,b>0),则G的渐近线方程为y=±x,即bx±ay=0,且a2+b2=25,圆心为(0,5),半径为r=3.∴=3?a=3,b=4.∴双曲线G的方程为-=1.21.如图1,正方形ABCD的边长为,E、F分别是DC和BC的中点,H是正方形的对角线AC与EF的交点,N是正方形两对角线的交点,现沿EF将折起到的位置,使得,连结PA,PB,PD(如图2).(1)求证:;(2)求点A到平面PBD的距离.参考答案:(1)见解析(2)试题分析:(1)首先由中位线定理及已知条件推出平面,然后由线面垂直的性质定理平面,从而可使问题得证;(2)分别把和当做底面求出棱锥的体积,由此列出方程求解即可.试题解析:(1)证明:∵分别是和的中点,∴.又∵,∴,故折起后有,又∵,∴平面,又∵平面,∴,∵平面,∴平面,又∵平面,∴.(2)∵正方形的边长为,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 钢铁冶金净化施工协议
- 气体行业产品经理招聘协议
- 艺术品租赁与展览协议
- 影视作品授权使用合同
- 员工节能减排协议
- 2024合同书格式试用合同书
- 工业园区土地租赁承诺书
- 2023年上海市中考物理一轮复习-第4章 机械和功
- 建筑土石方工程劳务合同范例
- 油田基站租赁协议
- 2024年医疗器械经营质量管理规范培训课件
- 景区旅游安全风险评估报告
- GB/T 36187-2024冷冻鱼糜
- 22G101三维彩色立体图集
- 建筑施工安全生产治本攻坚三年行动方案(2024-2026年)
- DL-T 1476-2023 电力安全工器具预防性试验规程
- 国家开放大学《心理健康教育》形考任务1-9参考答案
- MOOC 法理学-西南政法大学 中国大学慕课答案
- 标准吞咽功能评价量表(SSA)2页
- 用友华表伙伴商务手册.
- 心理安全网格化监管实施方案
评论
0/150
提交评论