版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年湖北省荆门市杨集中学高二数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知两点,点为坐标平面内的动点,满足=0,则动点到两点、的距离之和的最小值为A.4
B.5
C.6
D.参考答案:B2.执行如图所示的程序框图,若输入x=4,则输出y的值为()A. B. C. D.参考答案:A【考点】循环结构.【分析】由x←4,先计算y←,进行判断|1﹣4|>1,不满足判断框,应执行“否”,将y的值输给x,即x←1;依此类推,当满足|y﹣x|<1时,即可输出y的值.【解答】解:由x←4,先计算y←,进行判断|1﹣4|>1,不满足判断框,应执行“否”,将y的值输给x,即x←1;由x←1,先计算y←,进行判断||>1,不满足判断框,应执行“否”,再将y的值输给x,即x←;由x←,先计算y←,进行判断||<1,满足判断框,应执行“是”,应输出y←.故选A.3.已知抛物线的焦点是F(0,-2),则它的标准方程为(
)A.
B.
C.
D.参考答案:D略4.已知满足且,则下列选项中不一定能成立的是A.B.
C.
D.参考答案:C5.某三棱锥的三视图如图所示,该三棱锥的表面积是()A.28+6 B.30+6 C.56+12 D.60+12参考答案:B【考点】由三视图求面积、体积.【分析】通过三视图复原的几何体的形状,利用三视图的数据求出几何体的表面积即可.【解答】解:三视图复原的几何体是底面为直角边长为4和5的三角形,一个侧面垂直底面的等腰三角形,高为4,底边长为5,如图,所以S底==10,S后=,S右==10,S左==6.几何体的表面积为:S=S底+S后+S右+S左=30+6.故选:B.6.点(3,1)和点(﹣4,6)在直线3x﹣2y+a=0两侧,则a的范围是()A.a<﹣7或a>24 B.﹣7<a<24 C.a=﹣7或a=24 D.﹣24<a<7参考答案:B【考点】二元一次不等式(组)与平面区域.【分析】由已知点(3,1)和点(﹣4,6)分布在直线3x﹣2y+a=0的两侧,我们将A,B两点坐标代入直线方程所得符号相反,则我们可以构造一个关于a的不等式,解不等式即可得到答案.【解答】解:若(3,1)和点(﹣4,6)分布在直线3x﹣2y+a=0的两侧则[3×3﹣2×1+a]×[3×(﹣4)﹣2×6+a]<0即(a+7)(a﹣24)<0解得﹣7<a<24.故选B.7.圆柱的侧面展开图是一个面积为16π2的正方形,该圆柱内有一个体积为V的球,则V的最大值为(
)A. B. C. D.参考答案:A【分析】根据正方形的面积计算出圆柱的底面直径和高,由此求得圆柱内最大球的半径,进而求得体积.【详解】设圆柱的底面直径为,高为,则,解得.故圆柱的底面直径为,高为,所以圆柱内最大球的直径为,半径为,其体积为.故选A.【点睛】本小题主要考查圆柱侧面展开图有关计算,考查圆柱内的最大球的体积的求法,属于基础题.8.已知定义在上的奇函数满足,且时,,甲,乙,丙,丁四位同学有下列结论:甲:;乙:函数在上是增函数;丙:函数关于直线对称;丁:若,则关于的方程在上所有根之和为-8,其中正确的是(
)A.甲,乙,丁
B.乙,丙
C.甲,乙,丙
D.甲,丁参考答案:D9.设在内单调递增,,则是的()A.充分不必要条件
B.必要不充分条件C.充分必要条件
D.既不充分也不必要条件参考答案:B10.已知x,y满足不等式组,则z=2x﹣y的最大值为()A.﹣2 B.0 C.2 D.4参考答案:C【考点】7C:简单线性规划.【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=2x﹣y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可.【解答】解:先根据约束条件,画出可行域,由得A(1,0),当直线z=2x﹣y过点A(1,0)时,z最大值是2,故选:C.二、填空题:本大题共7小题,每小题4分,共28分11.执行如图所示的程序框图,输出的S值为8.参考答案:8略12.幂函数的图象过点,则其解析式为
参考答案:13.(4分)(已知圆C的圆心是直线x﹣y+1=0与x轴的交点,且圆C与直线x+y+3=0相切.则圆C的方程为_________.参考答案:14.在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说:“甲说的对”;丁说:“反正我没有责任”.四人中只有一个人说的是真话,则该事故中需要负主要责任的人是
.参考答案:
甲
15.函数f(x)=2x3﹣3x2+a的极大值为6,则a=
.参考答案:6【考点】6D:利用导数研究函数的极值.【分析】令f′(x)=0,可得x=0或x=1,根据导数在x=0和x=1两侧的符号,判断故f(0)为极大值,从而得到f(0)=a=6.【解答】解:∵函数f(x)=2x3﹣3x2+a,∴导数f′(x)=6x2﹣6x,令f′(x)=0,可得x=0或x=1,导数在x=0的左侧大于0,右侧小于0,故f(0)为极大值,∴f(0)=a=6.导数在x=1的左侧小于0,右侧大于0,故f(1)为极小值.
故答案为:6.16.一般的,如果从个体数为N样本中抽取一个容量为n的样本,那么每个个体被抽到的概率是__________________参考答案:17.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x元456789销量y元908483807568由表中数据,求得线性回归方程为,若从这些样本点中任取一点,则它在回归直线下方的概率为.参考答案:【考点】线性回归方程.【分析】计算样本中心,代入回归方程解出a,得到回归方程,再计算当x=4,5,6,…9时的预测值,找出真实值比预测值小的点的个数,利用古典概型的概率公式计算概率.【解答】解:=,=80,∴a==106,∴回归方程为=﹣4x+106.计算预测销量如下:单价x元456789销售量y908483807568预测销售量908682787470∴销售量比预测销量少的点有2个,∴从这些样本点中任取一点,则它在回归直线下方的概率P=.故答案为.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题满分14分)已知直线(为参数),圆(为参数)
(1)当=时,求与的交点坐标;(2)过坐标原点O作的垂线,垂足为A,P为OA的中点.当变化时,求P点轨迹的参数方程,并指出它是什么曲线.参考答案:解:(1)当α=时,C1的普通方程为y=
(x-1),C2的普通方程为x2+y2=1.(4分)联立方程组
(6分)(2)C1的普通方程为xsinα-ycosα-sinα=0.(7分)A点坐标为(sin2α,-cosαsinα).(9分)故当α变化时,P点轨迹的参数方程为19.一般地,若f(x)的定义域为[a,b],值域为[ka,kb],(a<b),则称[a,b]为函数f(x)的“k倍保值区间”.特别地,若f(x)的定义域为[a,b],值域也为[a,b],(a<b),则称[a,b]为函数f(x)的“保值区间”.(1)若[1,b]为g(x)=的保值区间,求常数b的值;(2)问是否存在常数a,b(a>﹣2)使函数h(x)=的保值区间为[a,b]?若存在,求出a,b的值,否则,请说明理由.(3)求函数p(x)=x2+的2倍保值区间[a,b].参考答案:【考点】函数与方程的综合运用.【专题】新定义;分类讨论;分析法;函数的性质及应用.【分析】(1)求得g(x)的对称轴为x=1,可得g(x)在[1,b]上单调递增,即有b的方程,解方程可得b;(2)假设存在这样的a,b,由于a>﹣2,则h(x)在[a,b]上单调递减,可得a,b的关系式,解方程即可判断是否存在;(3)讨论①当a<b<0时,②当0<a<b时,③当a<0<b时,运用单调性,结合二次方程解方程可得a,b,进而得到所求区间.【解答】解:(1)g(x)=的对称轴为x=1,则g(x)在[1,b]上单调递增,可得?b=3或b=1,由于b>1,则b=3;(2)假设存在这样的a,b,由于a>﹣2,则h(x)在[a,b]上单调递减,则即有?(a+2)b=(b+2)a?a=b与a<b矛盾.故不存在这样的a,b;(3)①当a<b<0时,p(x)在[a,b]上单调递增,
则即为则a,b0为方程的两个根.由于ab=﹣13<0(舍);②当0<a<b时,p(x)在[a,b]上单调递减,则即为,两式相减(舍);③当a<0<b时,,若(舍),若p(x)min=p(a)=﹣a2+=2a,解得a=﹣﹣2或﹣2(舍去),又,则,综上所述,或.即有2倍保值区间[a,b]为[1,3]或[﹣﹣2,].【点评】本题考查新定义的理解和运用,考查函数的性质和运用,主要考查单调性的运用,考查分类讨论的思想方法,考查运算能力,属于中档题.20.(本题12分)某位收藏爱好者鉴定一件物品时,将正品错误地鉴定为赝品的概率为,将赝品错误地鉴定为正品的概率为,已知一批物品共有4件,其中正品3件,赝品1件.(1)求该收藏爱好者的鉴定结果为正品2件,赝品2件的概率;(2)求该收藏爱好者的鉴定结果中正品数的分布列及数学期望.参考答案:解:(1)有两种可能得到结果为正品2件,赝品2件;其一是错误地把一件正品鉴定成赝品,其他鉴定正确;其二是错误地把两件正品鉴定成赝品,把一件赝品鉴定成正品,其他鉴定正确.…
则所求的概率为
5分(2)的所有可能取值为0,1,2,3,4
6分
;;;;
;
10分则的分布列为01234
11分则的数学期望
12分21.已知m为实数.命题p:方程表示双曲线;命题q:对任意,恒成立.(1)若命题p为真命题,求实数m的取值范围;(2)若命题“p或q”为真命题、“p且q”为假命题,求实数m的取值范围.参考答案:(1)(2)【分析】(1)由真可得,解不等式即可得到所求范围;(2)由真可得判别式小于0,解得的范国,由为真命题,为假命题,可得一真一假,分两种情况讨论,对于真假以及假真分别列不等式组,分别解不等式组,然后求并集即可求得实数的取值范围.【详解】(1)若命
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国城市咖啡发展报告
- 《天然药物的开发》课件
- 养老保险的三大支柱
- 社区项目方案设计模板
- 两位数乘两位数笔算能力测试口算题带答案
- 家庭教育活动报告
- 《组织行为学》激励课件
- 严重精神病性管理工作培训
- 物联网产业发展现状智慧养老技术概论
- 音乐照护健康评估-老年康体指导 初 级 -1729733444183
- 年产xxx套棉花种植机械化设备项目投资计划书
- 蛛网膜下腔出血诊疗规范2023版
- 人教版新教材高一上学期期末考试数学试卷及答案(共五套)
- 河道保洁服务投标方案
- 《网络游戏利与弊》课件
- 4.与食品经营相适应的主要设备设施布局操作流程等文件
- 法律文书校对规定
- 小学食堂结算统计表(午餐、晚餐都吃的学校适用)
- 海水的性质 说课课件 2023-2024学年高中地理人教版(2019)必修第一册
- 医院重点岗位工作人员轮岗制度
- CFM56-5B发动机VBV活门的钢丝软轴操控原理及软轴刚度研究
评论
0/150
提交评论