版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省荆州市中学2022年高二数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.用秦九韶算法求多项式f(x)=12+35x-8x2+79x3+6x4+5x5+3x6在x=-4的值时,v4的值为()A.-57
B.
-845
C.
220
D
.3392参考答案:C2.如图,已知平行六面体,点是上底面的中心,且,,,则用,,表示向量为A.
B.C.
D.参考答案:A3.已知等差数列{an}的公差d≠0,且a1,a3,a9成等比数列,则的值是()
A.
B.
C.1
D.不确定参考答案:A4.在平面直角坐标系xOy中,直线3x+4y﹣5=0与圆x2+y2=4相交于A、B两点,则弦AB的长等于()A.3 B.2 C. D.1参考答案:B【考点】直线与圆相交的性质.【分析】由直线与圆相交的性质可知,,要求AB,只要求解圆心到直线3x+4y﹣5=0的距离【解答】解:由题意可得,圆心(0,0)到直线3x+4y﹣5=0的距离,则由圆的性质可得,,即.故选B5.在极坐标系中,点(2,)到圆ρ=2cosθ的圆心的距离为()A.2 B. C. D.参考答案:D【考点】QK:圆的参数方程.【分析】在直角坐标系中,求出点的坐标和圆的方程及圆心坐标,利用两点间的距离公式求出所求的距离.【解答】解:在直角坐标系中,点即(1,),圆即x2+y2=2x,即
(x﹣1)2+y2=1,故圆心为(1,0),故点(2,)到圆ρ=2cosθ的圆心的距离为=,故选D.6.在等差数列中,若,则的值
(
)A. B. C. D.参考答案:C7.“﹣1≤x≤2”是“x2﹣x﹣2=0”的()A.充分不必要条件 B.必要不充分条件C.冲要条件 D.既不充分也不必要条件参考答案:B【考点】必要条件、充分条件与充要条件的判断.【分析】解方程,求出方程的根,根据充分必要条件的定义判断即可.【解答】解:由x2﹣x﹣2=0,解得:x=2或x=﹣1,故“﹣1≤x≤2”是“x2﹣x﹣2=0”的必要不充分条件,故选:B.【点评】本题考查了充分必要条件的定义,考查集合的包含关系,是一道基础题.8.a∈R,|a|<3成立的一个必要不充分条件是()A.a<3 B.|a|<2 C.a2<9 D.0<a<2参考答案:A【考点】必要条件、充分条件与充要条件的判断.【分析】由|a|<3,解得﹣3<a<3.即可判断出结论.【解答】解:由|a|<3,解得﹣3<a<3.∴|a|<3成立的一个必要不充分条件是a<3.故选:A.9.定积分的值为(
)A.e-2
B.e-1
C.e
D.e+1参考答案:A10.下面几种推理过程是演绎推理的是()A.某校高二年级有10个班,1班62人,2班61人,3班62人,由此推测各班人数都超过60人B.根据三角形的性质,可以推测空间四面体的性质C.平行四边形对角线互相平分,矩形是平行四边形,所以矩形的对角线互相平分D.在数列{an}中,a1=1,an+1=,n∈N*,计算a2,a3,由此归纳出{an}的通项公式参考答案:C【考点】演绎推理的基本方法.【分析】需逐个选项来验证,B选项属于类比推理,A选项和D选项都属于归纳推理,只有C选项符合题意.【解答】解:A选项,某校高二年级有10个班,1班62人,2班61人,3班62人,由此推测各班都超过50人,也属于归纳推理,B选项,由三角形的性质,推测空间四面体性质,属于类比推理;C选项,具有明显的大前提,小前提,结论,属于典型的演绎推理的三段论形式.D选项,在数列{an}中,a1=1,an+1=,n∈N*,由此归纳出{an}的通项公式,属于归纳推理;综上,可知,只有C选项为演绎推理.故选C.二、填空题:本大题共7小题,每小题4分,共28分11.下面四个命题:①若直线a,b异面,b,c异面,则a,c异面;②若直线a,b相交,b,c相交,则a,c相交;③若a∥b,则a,b与c所成的角相等;④若a⊥b,b⊥c,则a∥c.其中真命题的序号为 参考答案:③12.已知定点A(),若动点P在抛物线上,且点P在y轴上的射影为点M,则的最大值是
。参考答案:略13.若,则最大值为___▲_______.参考答案:2
14.已知A(3,1),B(﹣4,0),P是椭圆上的一点,则PA+PB的最大值为
.参考答案:10+
【考点】椭圆的简单性质.【分析】由题意画出图形,可知B为椭圆的左焦点,A在椭圆内部,设椭圆右焦点为F,借助于椭圆定义,把|PA|+|PB|的最大值转化为椭圆上的点到A的距离与F距离差的最大值求解.【解答】解:由椭圆方程,得a2=25,b2=9,则c2=16,∴B(﹣4,0)是椭圆的左焦点,A(3,1)在椭圆内部,如图:设椭圆右焦点为F,由题意定义可得:|PB|+|PF|=2a=10,则|PB|=10﹣|PF|,∴|PA|+|PB|=10+(|PA|﹣|PF|).连接AF并延长,交椭圆与P,则此时|PA|﹣|PF|有最大值为|AF|=∴|PA|+|PB|的最大值为10+.故答案为:10+15.与椭圆有公共焦点,且离心率的双曲线方程为__________.参考答案:16.某程序框图如图所示,则该程序运行后输出的k的值是
.参考答案:5【考点】程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出k值.模拟程序的运行过程,用表格对程序运行过程中各变量的值进行分析,不难得到最终的输出结果.【解答】解:程序在运行过程中各变量的值如下表示:第一圈
k=3
a=43
b=34第二圈
k=4
a=44b=44第三圈
k=5
a=45b=54
此时a>b,退出循环,k值为5故答案为:5.17.等轴双曲线的一个焦点是,则它的标准方程是
。参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知数列{an}满足a1=,﹣=0,n∈N*.(1)求证:数列{}是等差数列;(2)设bn=﹣1,数列{bn}的前n项之和为Sn,求证:Sn<.参考答案:【考点】数列与不等式的综合.【专题】等差数列与等比数列.【分析】(1)把已知的数列递推式变形,得到,然后代入即可得到答案;(2)由(1)中的等差数列求出数列{an}的通项公式,代入bn=﹣1并整理,然后利用裂项相消法求数列{bn}的前n项和后得答案.【解答】证明:(1)由﹣=0,得=,∴,即,∴.则=.∴数列{}是以﹣1为公差的等差数列;(2)由数列{}是以﹣1为公差的等差数列,且,∴,则.bn=﹣1=.Sn=b1+b2+…+bn===.【点评】本题考查了数列递推式,考查了等差关系的确定,训练了裂项相消法求数列的和,是中档题.19.(14分)如图,抛物线:与坐标轴的交点分别为、、.⑴求以、为焦点且过点的椭圆方程;⑵经过坐标原点的直线与抛物线相交于、两点,若,求直线的方程.参考答案:⑴由解得、、…………3分所以,,从而…………5分,椭圆的方程为…………6分⑵依题意设:…………7分,由得…………8分依题意得…………11分,解得…………13分所以,直线的方程是或…………14分20.某营养师要求为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素.另外,该儿童这两餐需要的营状中至少含64个单位的碳水化合物和42个单位的蛋白质和54个单位的维生素.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?参考答案:略21.在△ABC中,角A、B、C所对的边分别是a、b、c,已知.(1)求tanA的值;(2)若,,,D为垂足,求AD的长.参考答案:(1)(2)【分析】(1)根据正弦定理化边为角,再根据两角和正弦公式化简得结果,(2)先根据余弦定理求,再利用三角形面积公式求AD.【详解】(1)因为,所以因为,所以,即.因为,所以,所以.则.(2)因为,所以,.在△ABC中,由余弦定理可得,即.由,得.所以.【点睛】本题考查正弦定理、余弦定理以及三角形面积公式,考查基本分析求解能力,属中档题.22.已知函数,,.(1)当,时,求函数的最小值;(2)当,时,求证方程在区间(0,2)上有唯一实数根;(3)当时,设,是函数两个不同的极值点,证明:.参考答案:(1)(2)见解析(3)见解析【分析】(1)构造新函数y=,求导判断单调性,得出最小值e.(2)变量分离a=-=h(x),根据函数单调性求出函数h(x)的最小值,利用a的范围证明在区间(0,2)上有唯一实数根;(3)求出,问题转化为证,令x1﹣x2=t,得到t<0,根据函数的单调性证明即可.【详解】(1)当=0,时,=,求导y’==0的根x=1所以y在(-),(0,1)递减,在(1,+)递增,所以y=e(2)+=0,所以a=-=h(x)H’(x)=-=0的根x=2则h(x)在(0,2)上单调递增,在(2,+∞)上单调递减,所以h(2)是y=h(x)的极大值即最大值,即所以函数f(x)在区间(0,2)上有唯一实数根;
(3)=-F’(x)-2ax-a=0的两根是,∵x1,x2是函数F(x)的两个不同极值点(不妨设x1<x2),∴a>0(若a≤0时,f
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 校本课程(物理趣味知识及实验)
- 《生物电化学》课件
- 《头颈部疾病CT诊断》课件
- 《公共关系危机处理》课件
- 《通信工程与概预算》课件
- 地理新教师培训讲座
- 三年级数学两位数乘两位数笔算题评价试题试题
- 垂体瘤护理查房
- 重庆市2022届高三下学期第二次诊断性考试(二模)化学试卷
- 团体辅导活动策划案
- 电力工程验收附件模板
- 简述火力发电厂生产过程课件
- 骨髓造血细胞形态学检查课件
- 砷环境地球化学研究进展
- 道路冷再生施工工艺及方法
- 施工区域交通安全措施及应急预案措施
- 新版幼儿园安全用电课件ppt
- 人教鄂教版科学六年级下册全册教案
- 《客舱服务与的管理》课程标准.doc
- 材料成型概论 第四章 挤压成型
- 三峡教学案例
评论
0/150
提交评论