新版高中数学人教A版必修5习题第二章数列2.3.1_第1页
新版高中数学人教A版必修5习题第二章数列2.3.1_第2页
新版高中数学人教A版必修5习题第二章数列2.3.1_第3页
新版高中数学人教A版必修5习题第二章数列2.3.1_第4页
新版高中数学人教A版必修5习题第二章数列2.3.1_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.3等差数列的前n项和第1课时等差数列的前n项和课时过关·能力提升基础巩固1等差数列{an}的前n项和为Sn,若a1=2,S3=12,则a6等于().A.8 B.10 C.12 D.14答案:C2数列{an}的前n项和为Sn,若Sn=2n218n,则当Sn取得最小值时,n的值为().A.4或5 B.5或6 C.4 D.5答案:A3设数列{an}的前n项和Sn=n2,则a8的值为().A.15 B.16 C.49 D.64解析:a8=S8S7=6449=15.答案:A4已知等差数列{an}的前n项和为Sn,若a4=18a5,则S8等于().A.18 B.36 C.54 D.72解析:∵a4=18a5,∴a4+a5=18.∴S8=答案:D5在等差数列{an}中,首项a1=0,公差d≠0,若ak=a1+a2+a3+…+a7,则k等于().A.21 B.22 C.23 D.24解析:由题意得ak=a1+(k1)d=(k1)d,a1+a2+a3+…+a7=21d,所以(k1)d=21d.又d≠0,所以k1=21,所以k=22.答案:B6已知等差数列{an}的前n项和为Sn,若a2=1,S5=10,则S7=.

解析:由S5=得a3=2,故a4=3,S7=答案:217已知数列{an}的前n项和Sn=2n3,则数列{an}的通项公式为.

解析:当n=1时,a1=S1=213=1;当n≥2时,an=SnSn1=2n32n1+3=2n1.又a1=1不满足上式,故an=答案:an=8等差数列{an}的前n项和为Sn,且S2016=a2016=2016,则a1=.

解析:S2016=2016(a1+a2016)答案:20149已知数列{an}是等差数列,且a2=1,a5=5.(1)求{an}的通项公式an;(2)求{an}前n项和Sn的最大值.解(1)设等差数列{an}的首项为a1,公差为d,由已知条件得所以an=a1+(n1)d=2n+5.(2)(方法一)Sn=na1+=n2+4n=4(n2)2.所以当n=2时,Sn取到最大值4.(方法二)由即32<n≤52,又S2=a1+a2=3+1=4,所以当n=2时,Sn取得最大值4.10已知数列{an}的前n项和为Sn,a1=1,an≠0,anan+1=λSn1,其中λ为常数.(1)证明:an+2an=λ;(2)是否存在λ,使得{an}为等差数列?并说明理由.(1)证明由题设,anan+1=λSn1,an+1an+2=λSn+11,两式相减,得an+1(an+2an)=λan+1.因为an+1≠0,所以an+2an=λ.(2)解由题设,a1=1,a1a2=λS11,可得a2=λ1.由(1)知,a3=λ+1.令2a2=a1+a3,解得λ=4.故an+2an=4.由此可得{a2n1}是首项为1,公差为4的等差数列,a2n1=4n3;{a2n}是首项为3,公差为4的等差数列,a2n=4n1.所以an=2n1,an+1an=2.因此存在λ=4,使得数列{an}为等差数列.能力提升1在等差数列{an}中,其前n项和为Sn,S10=120,则a1+a10等于().A.12 B.24 C.36 D.48解析:S10=10(a1+a10答案:B2等差数列{an}的前n项和为Sn,已知a3=4,S3=9,则S4等于().A.14 B.19 C.28 D.60解析:设等差数列{an}的公差为d,则有则S4=4a1+答案:A3已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99,Sn是等差数列{an}的前n项和,则使Sn取得最大值的n是().A.21 B.20 C.19 D.18解析:设等差数列{an}的公差为d,则解得则Sn=39n+n(n-1)2×答案:B★4等差数列{an}的前n项和为Sn,已知am1+am+1-aA.38 B.20 C.10 D.9解析:S2m1=∵S2m1=38,∴am≠0.又am1+am+1-∴(2m1)×2=38,m=10.答案:C5已知数列{an}的通项公式an=5n+2,则其前n项和Sn=.

解析:由于an+1an=5(n+1)+2(5n+2)=5为常数,则数列{an}是等差数列.又a1=5+2=3,公差d=5,则Sn=3n+答案:-6设Sn为等差数列{an}的前n项和,S8=4a3,a7=2,则a9=.

解析:设等差数列{an}的公差为d,由S8=4a3知a1+a8=a3,a8=a3a1=2d=a7+d,所以a7=d=2,所以a9=a7+2d=24=6.答案:67已知数列{an}的前n项和为Sn,且Sn=2an2,则S3=.解析:对于Sn=2an2,当n=1时,有S1=2a12,即a1=2a12,解得a1=2;当n=2时,有S2=2a22,即a1+a2=2a22,所以a2=a1+2.又a1=2,则a2=4;当n=3时,有S3=2a32,即a1+a2+a3=2a32,所以a3=a2+a1+2.又a1=2,a2=4,则a3=8,所以S3=2a32=14.答案:14★8已知数列{an},an∈N*,Sn是其前n项和,Sn=1(1)求证:{an}是等差数列;(2)设bn=(1)证明当n=1时,a1=S1=18(a1当n≥2时,an=SnSn1=18(an+2)2-18(an-1+2)2,整理得(an2)2(an1+2)2=0,即(an+an1)(anan14)=0.∵an∈N*,∴an+an1>0,∴anan14=0,即anan1=4(n≥2).故数列{an}是以2为首项,4为公差的等差数列.(2)解设数列{bn}的前n项和为Tn,∵bn=12an-30,且由(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论