新能源发电技术 第2版 课件 10分布式发电与能源互补(1)-分布式发电_第1页
新能源发电技术 第2版 课件 10分布式发电与能源互补(1)-分布式发电_第2页
新能源发电技术 第2版 课件 10分布式发电与能源互补(1)-分布式发电_第3页
新能源发电技术 第2版 课件 10分布式发电与能源互补(1)-分布式发电_第4页
新能源发电技术 第2版 课件 10分布式发电与能源互补(1)-分布式发电_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第10讲分布式发电与能源互补第一部分分布式发电§10.1.1分布式发电的概念分布式发电:在一定的地域范围内,由多个甚至多种形式的发电设备共同发电,以就地满足较大规模的用电要求。相对于集中发电的大型机组而言,其总的发电能力由分布在不同位置的多个中小型电源来实现;相对于过去的小型独立电源而言,其容量分配和布置有一定的规律,满足特定的整体要求。§10.1分布式与互补发电概述区分几个类似的概念:DP,DER,DG。分布式发电一般独立于公共电网而靠近用电负荷,可以包括任何安装在用户附近的发电设施,而不论其规模大小和一次能源的种类。一般来说,分布式电源是集成或单独使用的、靠近用户的小型模块化发电设备,多为容量在50兆瓦以下的小型发电机组。§10.1.1

分布式发电的概念§10.1.2

分布式发电的特点(1)建设容易,投资少(2)靠近用户,输配电简单,损耗小(3)污染少,环境相容性好(4)能源利用效率高(5)运行灵活,安全可靠性有保障(6)联网运行,有提供辅助性服务的能力§10.1.2

分布式发电的特点夏季和冬季用电高峰期,冷热电联供可满足季节供热或制冷需要,并节省电力,从而减轻供电压力。分布式发电对电网的辅助性服务分布式发电的适用场合分布式发电系统的运行模式:-独立运行多用于大电网覆盖不到的边远地区、农牧区。-联网运行多用于电网中负荷快速增长的区域和某些重要的负荷区域(工厂、医院等),分布式电源与公用电网共同向负荷供电。§10.2分布式电源与储能§10.2.1

新能源分布式电源分布式电源就是分散的小规模电源,容量<50MW,包括:(1)天然气分布式能源(2)可再生能源分布式发电(3)废弃资源综合利用常利用基于可再生能源的分布式电源。此外,微型燃气轮机应用广泛——热电联产机组微型燃气轮机是一类新近发展起来的小型热力发动机,是以天然气、汽油、柴油等为燃料的超小型燃气轮机。§10.2.1

新能源分布式电源微型燃气轮机发电的工作原理图§10.2.2分布式发电的储能装置由于自然资源的特性,可再生能源用于发电时其功率输出具有明显的间歇性和波动性,其变化甚是可能是随机的,容易对电网产生冲击,严重时会引发电网事故。为充分利用可再生能源并保障其供电可靠性,就要对这种难以准确预测的能量变化进行及时的控制和抑制。储能装置,就是用来解决这一问题。§10.2.2.1常用的储能技术(1)蓄电池储能蓄电池储能系统由蓄电池、逆变器、控制装置、辅助设备(安全、环境保护设备)等部分组成。可以分为铅酸电池、镍镉电池、镍氢电池、锂离子电池等。(2)超导储能核心部件是由超导材料制成的超导线圈。通入直流电,线圈中就会形成强磁场,

把电能以磁场能的形式储存起来。由于超导体的电阻几乎为零,电流在超导线圈中循环时产生的功率损耗很小,因而储存的能量不易流失。在外部需要能量时,可以把储存的能量送回电网或实现其它用途。§10.2.2.1常用的储能技术超导特性一般需要在很低的温度下才能维持。一旦温度升高,超导体就变为一般的导体,电流流过时将产生很大的功率损耗,储能的效果也就不复存在了。一般将超导线圈浸泡在温度极低的液体(液氢等),然后封闭在容器中。因此,超导储能系统除了核心部件超导线圈以外,还包括冷却系统、密封容器以及用于控制的电子装置。(2)超导储能§10.2.2.1常用的储能技术是一种机械储能方式。1970s就有了利用高速旋转的飞轮来储存能量,并应用于电动汽车的构想。由于飞轮材料和轴承等关键技术一直没有解决而停滞,1990s以来,高强度的碳纤维材料、低损耗磁悬浮轴承、电力电子学三方面的技术发展,飞轮储能得到快速发展。(3)飞轮储能§10.2.2.1常用的储能技术飞轮储能系统结构图§10.2.2.1常用的储能技术(4)水制氢储能这种储能系统需与燃料电池联合应用。在系统运行过程中,当负荷减小或发电容量增加时,将多余的电能用来电解水,使氢和氧分离,作为燃料电池的燃料送入燃料电池中存储起来;当负荷增加或发电容量不足时,使存储在燃料电池中的氢和氧进行化学反应直接产生电能,继续向负荷供电,从而保证供电的连续性。(详见本书的第9章)§10.2.2.1常用的储能技术(5)超级电容器储能双电层电容器的基本原理是利用电极和电解质之间形成的界面双电层来储存能量。这种电容器的储能是通过使电解质溶液进行电化学极化来实现的,并没有产生电化学反应,这种储能过程是可逆的。法拉第准电容是以准电容-准电容为主要机制,在正极和负极表面分别以金属氧化物的氧化/还原反应为基础或以有机半导体聚合物表面掺杂不同电荷的离子为基础,产生与电极充电电位有关的电容。§10.2.2.1常用的储能技术(5)超级电容器储能根据电化学电容器的结构及电极上发生反应的不同,超级电容器又可分为对称型和非对称型。如果两个电极的组成相同且电极反应相同,反应方向相反,则被称为对称型;反之则被称为非对称型。非对称型电容器具有比常规电容器更高的比能量和比二次电池更高的比功率。近年来开发出的一种新型的电容器——混合型超级电容器,一极采用传统的电池电极并通过电化学反应来储存和转化能量,另一极则通过双电层来储存能量。§10.2.2.2储能装置在分布式系统中的作用(1)平衡发电量和用电量(2)充当备用或应急电源某些分布式电源受自然条件影响而减少甚至不能供电时,储能系统就像备用电源,可临时维持供电。(3)改善分布式系统的可控性储能系统可调节分布式系统与大电网的能量交换,将难以准确预测和控制的分布式电源,整合为能够按计划输出电能的系统,使其成为可以调度的发电单元。(4)提供辅助服务§10.3分布式供电系统和微电网§10.3.1分布式供电系统构成分布式供电系统包含很多分散在各处的分布式电源,种类也往往不只一种,再加上储能装置和附近用电的负荷,其结构可能也相当复杂。§10.3.1分布式供电系统构成分布式供电系统一般由分布式电源、储能设备、分布式供电网络及控制中心和附近的用电负荷构成,如果与公共电网联网运行还包括并网接口。微电网是能够独立运行或者作为一个整体与公共电网联网的分布式供电系统。用户所需能量由各种分布式电源、冷热电联供系统和公共电网提供,微电网在满足用户供热和供冷需求的前提下,最终以电能作为统一的能源形式将各种分布式能源加以融合,满足特定的电能质量要求和供电可靠性。§10.3.2微电网微电网可看作大电网中的一个可控单元,而不再是多个分散的电源和负荷。§10.3.2微电网§10.3.2微电网基于我国的实际情况,我国微电网建设可以分为以下几种类型:(1)城市微电网。我国城市微电网可以依托居民小区、宾馆、医院、商场及办公楼等进行建设,城市微电网可以在经济发达地区优先发展。(2)企业微电网一般在中压配电网等级,容量较大,常见于石化、钢铁等大型企业,一般分布在城市的郊区。(3)偏远农村微电网主要建设在草原、山区等电力需求较低的偏远地区,将传统电力系统延伸到这类地区需要很大的成本。这类微电网以孤岛运行为主。在微电网系统中,孤岛运行和并网运行是两种基本的运行模式。为了更好地发挥分布式发电的优势,应采用一定的控制策略实现微电网孤岛和并网的平稳运行及两者之间的平稳转换。§10.3.3微电网的运行控制§10.3.3微电网的运行控制基于逆变器侧的孤岛检测方法可分为被动检测和主动检测两大类。被动检测是直接监测选定的公共耦合点PCC的参数(电压、频率、谐波等),同时控制逆变器在一定条件下停止并网运行。主动检测法是指在逆变器控制信号中加入相应的扰动,当电网正常工作时,由于电网的平衡作用,扰动信号几乎不起作用;若出现孤岛,扰动信号的存在会破坏系统的平衡,使得电压、频率等出现明显的变化,如果变化超出所规定的阈值范围,则可检测出孤岛。§10.3.3微电网的运行控制微电网并网运行时,微电网内部的各个分布式电源只需控制功率输出以保证微电网内部的功率平衡,而电压和频率由大电网来支持和调节,此时的逆变器可以采用恒功率(PQ)控制方法。§10.3.3微电网的运行控制当微电网孤岛运行时,与大电网的连接断开。此时,需由一个或几个分布式电源来维持微电网的电压和频率。由一个逆变型分布式电源执行恒压恒频(Vf)控制调节微电网频率和电压的情况构成主从结构的微电网;由多个逆变型分布式电源执行下垂(Droop)控制共同调节微电网频率和电压的情况构成对等结构的微电网。其余分布式电源逆变器仍然采用PQ控制方法。近年来,在对等结构微电网的基础上,人们又提出了结构更复杂的微电网分层控制结构(也称多代理控制),由控制器(MGCC)对微电网进行统一的协调控制,并负责微电网与大电网之间的通信与协调;微电源控制器(MC)和负荷控制器(LC)从属于MGCC,分别控制具体的微电源和负荷。1970s就有了分布式电源的概念,美国公共事业管理政策法公布后,正式得以推广,并很快被其它国家接受。“9·11”后,出于对供电安全的考虑,美国等加快分布式供电系统研究和建设的步伐,在很多国家已颇具规模。目前分布式电源站美国有6000多座;英国有1000多座;日本有近5000家,总容量超过600万千瓦。2006年欧盟国家的分布式供电系统达到1.5万个左右。2015年,风能和光伏电力的增长速度在美国能源增速中跃居首位,对美国新增发电能力的贡献达三分之二。分布式发电为减小碳排放量作出了巨大贡献。分布式发电的发展应用分布式发电的发展应用欧盟国家的分布式发电以太阳能光伏、风能和热电联产为主。欧洲风电的发展侧重于分散接入。经有关机构评估表明,仅分布式热电联产就能完成1/3的欧盟节能目标,每年可减少CO2排放1亿吨。日本的分布式发电以热电联产和太阳能光伏发电为主。2006年,热电联产装机容量达到870万千瓦,占日本电力装机4%。光伏分布式发电应用广泛,不仅用于公园、学校、医院、展览馆等公用设施,还开展了居民住宅屋顶光电的应用示范工程。丹麦是世界上能源利用效率最高的国家,80%以上的区域供热能源采用热电联产方式产生。丹麦分布式发电量超过全部发电量的50%。上海、北京、广州等大城市,10多年前就尝试分布式供电,已有成功范例(参见教材)。2005年,我国首个分布式电力技术集成工程中心落户广州,标志着我国分布式供电技术进入实质性发展阶段。分布式发电的发展应用§10.6分布式发电工程实例(参见教材P191)国网山东电科院——新能源分布式发电及微电网实验示范工程(风、光、储、辅为一体的多能互补微电网工程,总容量接近500kW)国网山东青岛——国内首个正式并网的居民分布式光伏电源——徐鹏飞的家庭小“发电厂”(总容量2kW),发电收益超过了其家庭同期使用的电网公司电量的支出,实现了用电、卖电的收支平衡,意味其个人光伏电站开始盈利。美国海上能源岛(容量250MW)第一部分小结分布式能源供电

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论