环形跑道问题(提高卷)-六年级数学思维拓展练习卷(通用版)_第1页
环形跑道问题(提高卷)-六年级数学思维拓展练习卷(通用版)_第2页
环形跑道问题(提高卷)-六年级数学思维拓展练习卷(通用版)_第3页
环形跑道问题(提高卷)-六年级数学思维拓展练习卷(通用版)_第4页
环形跑道问题(提高卷)-六年级数学思维拓展练习卷(通用版)_第5页
已阅读5页,还剩44页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

环形跑道问题(提高卷)

小学数学思维拓展高频考点培优卷(通用版)

一.选择题(共9小题)

I.I型和II型电子玩具车各一辆,沿相同的两个圆形轨道跑动,I型每5分钟跑一圈,II

型每3分钟跑一圈.某一时刻,I型和∏型恰好都开始跑第19圈,则I型比∏型提前()

分钟开始跑动.

A.32B.36C.38D.54

2.如图:AB是圆的直径,甲在A点,乙在8点,同时出发,甲逆时针方向走,乙顺时针

方向走,他们第一次相遇在C点,C点离A点160米,在。点第二次相遇,D点离B点

120米,那么这个圆周的周长是()米.

A.1440B.960C.720D.480

3.两个骑车人在不同的赛道上训练.骑车人A用圆形赛道,其直径是1千米;骑车人B用

直线赛道,其长度为5千米.骑车人A用10分钟完成3圈,而骑车人8用5分钟行进

了2个来回.那么骑车人A与骑车人B的速度比是()

A.1:1.6πB.ττ:10C.3:4D.3π:40

4.兔子和乌龟在100米的环形跑道上赛跑.它们从同一地点同时出发,乌龟每爬行5米,

兔子超过它一圈.当乌龟爬完一圈时,兔子跑了()圈.

A.18B.20C.21D.22

5.如图,长方形A8CZ)中A8:BC=5:4.位于A点的第一只蚂蚁按A-BfC-Z)fA的

方向,位于C点的第二只蚂蚁按C-BfA-DfC的方向同时出发,分别沿着长方形的

边爬行.如果两只蚂蚁第一次在B点相遇,则两只蚂蚁第二次相遇在()边上.

A.ABB.BCC.CDD.DA

6.池塘周围有一条道路,A、B、C三人从同一地点同时出发,A和B往逆时针方向走,C

往顺时针方向走.A以每分钟80米、B以每分钟65米的速度行走,C在出发后的20分

钟遇到A,再过2分钟遇到B,池塘的周长是()米.

A.2800B.3000C.3200D.3300

7.甲、乙两人同时同地沿400米环形跑道反向而行,经1分20秒相遇,如果两人同时同地

同向而行,甲跑3圈就追上乙.甲每秒跑()米.

A.2B.3C.2.4D.1.6

8.小泉和小美在一条400米的环形跑道上同一起点开始跑步,都跑了三圈,小美比小泉早

6分钟出发,反而比小泉晚到2分钟,小泉在跑了()米后追上小美.

A.900B.800C.720D.300

9.如图,赛车场的2400米跑道中套着1800米小跑道,大跑道与小跑道有1200米路程相重,

甲车以每秒40米的速度沿大跑道逆时针方向跑,乙以每秒20米的速度沿小跑道顺时针

方向跑,两人同时从两跑道的交点A处出发,那么他们第二次在跑道上相遇时,甲共跑

了()米.

A.4400B.3600C.2800D.1500

填空题(共35小题)

10.边长为50c〃?的正方形ABCD的顶点A,C各有一只小虫,它们同时出发沿正方形的边

顺时针爬行,小虫甲每秒爬4c∕n,小虫乙每秒爬5c∕n,它们在顶点处转弯时都需要耗时2

秒。经过秒其中一只小虫将首次追上另一只小虫。

11.一条圆形跑道,长400米,甲乙在同一地点同时刻反向而行,甲的速度是90米/分钟,

乙的速度是60米/分钟,运动20分钟的时候,两人相遇了次。

12.甲、乙二人在400米环形跑道上进行IoooO米赛跑,两人从起点同时、同向出发,开始

时甲每秒跑8米,乙每秒跑6米,当甲每次追上乙后,甲每秒减少2米,乙每秒减少0.5

米,如此往复,直到甲发现乙第一次从后面追上自己开始,两人每秒都增速0.5米,这样

一直到终点。那么,领先者到达终点时,另一人距终点米。

13.小明和小红在200米的环形跑道上跑步,他们从同一地点同向出发。如果小红先跑了

50米后小明再出发,则小明跑了100米后追上小红。如果小明跑了100米小红再出发,

那么小红跑了米后被小明追上。

14.甲、乙两运动员在周长是400米的环形跑道上向同一方向竞走,己知乙的速度是平均每

分80米,甲的速度是乙的1.25倍,甲在乙的前面100米.问甲第二次追上乙时一共用了

分.

15.如图所示,在一条400米的环形跑道上,A、B两点相距100米.甲、乙两人分别从A、

8两点同时出发,按逆时针方向跑步.甲每秒跑5米,乙每秒跑4米,每人每跑100米

都要停10秒钟,那么甲追上乙需要秒.

16.甲和乙两人分别从圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运

动,当乙走了250米以后,他们第一次相遇,在甲走完一周前80米处又第二次相遇。此

圆形场地的周长为米。

17.甲、乙、丙三人绕操场步行一周,甲走要3分钟,乙走要4分钟,丙走要6分钟.如果

三人同时同地同向出发绕操场行走,当他们三人第一次重新相遇在出发点时,三人共走

T周.

18.一只老鼠从A点沿着长方形路线逃跑,一只花猫同时从A点朝长方形路线的另一方向

捕捉,结果在距离中点6米的C处,花猫捉住了老鼠。已知老鼠的速度是花猫的一,则

14

长方形的周长米。

19.小姚、小勇两人在200米的环形跑道上相距IOO米背向出发,小姚每秒种跑2.3米,到

他们第三次相遇时总共用了100秒,此时小勇再跑米就会回到自己的出发地.

20.在一个长400厘米的圆形的轨道上有A,B,C,。四个等距离的小球,开始时B,。两

个小球不动,小球A,C分别以每秒1厘米和每秒29厘米的速度沿着圆形道向小球8运

动,接下去的运动规则如下:当某两个小球相遇时,其速度及方向就传递给对方,那么

当第一次有三个小球相遇时,小球。运动了厘米.(例如:当小球C第一次遇到

小球B后,小球C的速度就变为0,而小球B的速度就变为每秒29厘米,并沿着小球C

原来的方向运动,小球半径忽略不计.)

40)

21.在一圆形跑道上,甲从A点、乙从B点同时出发后反向而行,6分钟后两人相遇,再过

4分钟甲到达B点,又过8分钟两人再次相遇,那么乙环行一周需要分钟.

22.甲、乙、丙三人在一条周长为360米环形跑道上的同一出发点:甲先出发,逆时针方向

跑步;在甲还未完成一圈时,乙、丙同时出发,顺时针方向跑步;当甲、乙第一次相遇

时,丙刚好距他们半圈;一段时间后,当甲、丙第一次相遇时,乙刚好也距他们半圈.如

果乙的速度是甲的4倍,那么,当乙、丙出发时,甲已经跑了米.

23.A、B两人同时从同一地点绕操场跑道跑步.如果是沿着同一方向跑,3小时后A追上

B-,如果沿着相反方向跑,2小时后能相遇.A、B两人跑步速度比的比值是.

24.甲、乙两名运动员在环形跑道上从同一点同时背向而行,在出发30分钟后两人第一次

相遇.已知甲运动员跑一圈要80分钟,那么乙运动员跑一圈要分钟.

25.如图,是一个边长为90米的正方形,甲从A出发,乙同时从B出发,甲每分钟行进63

米,乙每分钟行进72米,当乙第一次追上甲时,乙在点上.

26.小明和小红在600米的环形跑道上跑步,两人从同一起点同时出发,朝相反方向跑,第

一次和第二次相遇时间间隔50秒,已知小红的速度比小明慢2米/秒,则小明的速度为

米/秒.

27.甲乙两人从300米环形跑道的同一点出发,背向而行,甲每秒跑2米,乙每秒跑4米.当

两人迎面相遇时,甲转身往回跑;当甲乙再相遇时,乙转身往回跑.若依此类推,出发

后秒两人第一次在出发点相遇.

28.如图,A、B为圆形轨道一条直径的两个端点,甲、乙、丙三个微型机器人在圆形轨道

上同时出发,作匀速圆周运动,甲、乙从4出发,丙从8出发:乙顺时针运动,甲、丙

逆时针运动,出发后12秒钟甲到达B,再过9秒钟甲第一次追上丙时恰好也和乙第一次

相遇;那么当丙第一次到达A后,再过秒钟,乙才第一次到达民

29.小明在240米长的环形跑道上跑了一圈.已知他前一半时间每秒跑5米,后一半时间每

秒跑3米,那么小明后一半路程用了秒.

30.如图,在一个周长是300米的环形跑道上,甲、乙、丙三人同时从A地出发,甲、乙

沿顺时针方向行走,速度分别是每分钟40米和每分钟50米;丙沿逆时针方向行走,速

度是每分钟60米.乙每跑100米,就要休息1分钟;甲、丙每次相遇,两人都会同时休

息半分钟,那么,当甲第三次超越乙时,丙一共走了米.

I300tn1

31.甲、乙、丙3人在一个周长是300米的环形跑道上同时出发,出发地和行走方向如图所

示.已知,出发15秒后乙和丙第一次相遇,又过了10秒,甲和乙第一次相遇.那么,

再经过秒,甲第一次追上丙.

1I1

32.如图,甲、乙两人从A地同时背向出发,在环形路线上行走,第一次相遇时甲比乙多

走了200米,当甲回到A地后速度提高一倍,继续行走,结果距A地250米与乙第二次

相遇,那么这个环形跑道长为«

33.环形跑道周长是500米,甲、乙两人按顺时针沿环形跑道同时、同地起跑,甲每分钟跑

60米,乙每分钟跑50米,甲、乙两人每跑200米均要停下休息1分钟.那么甲首次追上

乙需分钟.

34.甲、乙、丙3人在周长是300米的环形跑道上同时同地同向出发.甲第一次追上乙时,

甲、乙恰好都回到出发点,此时丙距离出发点100米;过了一会,甲第一次追上丙时,

乙跑了7圈多一些,那么,丙第一次追上乙时,甲总共跑了米.

35.爷爷和孙子两人同时从同一地点反向绕一条环形跑道跑步,在第一次相遇后,爷爷又跑

了8分钟回到原地,已知孙子跑一圈需要6分钟,爷爷跑一圈的时间是偶数,爷爷跑一

圈的时间是分钟.

36.如图是一个边长100米的正方形.甲、乙两人同时从A点出发,沿正方形的边走.甲

逆时针每分钟行75米,乙顺时针每分钟行45米,两人第一次在CD边(不包括C、D

两点)上相遇,是出发以后第次相遇.

37.甲、乙两人在一环形跑道上,甲跑步,乙步行.如果他们同时从同一点出发,背向而行,

1分钟后二人相遇;如果他们同时从同一点同向而行,则3分钟后甲从背后追上乙.依这

样的速度,甲沿着环形跑道跑一圈所花的时间是分秒.

38.在一个环形跑道上有相距100米的甲、乙两个电动玩具车,两车同时出发同向而行,甲

车在前,乙车在后,5分钟后乙车第一次追上甲车,又过了20分钟,乙车第二次追上甲

车,此时甲车正好驶完一圈.那么乙车的速度为每分钟米.

39.如图,在正方形环形道路的四个顶点各有编号为1、2、3、4的车站:甲、乙、丙、丁

四个人分别从编号为A、B、C、。的车站同时出发(A、B、C、。互不相同),沿顺时针

方向驾车匀速行驶,且从1、2、3、4号车站出发的车的速度分别为1、2、3、4,以后速

度再不变化.行驶完毕后,他们有如下的话:

甲说:“我第一次追上乙时恰在车站①”.

乙说:“我第一次追上丙时恰在车站②”.

丙说:“我第一次追上丁时恰在车站③”.

丁说:“我第一次追上甲时恰在车站④”.

已知其中有两人的话正确,两人说的话错误.那么四位数而而=.

(p---®

®---0

40.甲、乙、丙三人同时从4点出发,按逆时针方向沿着构成正方形ABCD的4条街道跑

步.已知三个人的速度分别为每秒5米、4米和3米.在甲第一次看到乙、丙与他在同一

条街后,又过了7分钟,三个人第一次到达同一点.那么四条街道的总长是米.

41.甲、乙、丙三人在长2790米的环形路上的同一地点同时出发,甲、乙同向,丙与甲、

乙背向而走,甲每分钟走80米,乙每分钟走70米,丙在距离乙180米处遇见甲.丙每

分钟走米.

42.可可、乐乐两人绕周长240米的湖边跑步.他们从一棵大树下同时出发背向而行,可可

每秒跑4米、乐乐每秒跑5米.他们第3次相遇时.可可离大树米.

43.甲乙二人都以不变的速度在环形跑道上跑步,已知甲跑完一圈用40秒.如果他们同时

从同一地点出发,背向而行,每隔24秒相遇一次;如果他们同向而行,每隔秒

钟相遇一次.

44.甲、乙两人在环形跑道上跑步,他们的速度均保持不变,如果两人同时从两地出发相背

而跑,4分钟后两人第一次相遇,已知甲跑一周需6分钟,那么乙跑一周需分钟.

三.解答题(共16小题)

45.在周长为400米的圆形场地的一条直径的两端,甲、乙二人分别以每秒12米、每秒10

米的速度同时同向骑车出发,沿圆周行驶.问:14分钟内甲追上乙多少次?

46.如图,两个圆环形跑道,大圆环的周长为600米,小圆环的周长为400米.甲的速度为

每秒6米,乙的速度为每秒4米.甲、乙二人同时由A点起跑,方向如图所示,甲沿大

圆环跑一圈,就跑上小圆环,方向不变,沿小圆环跑一圈,又跑上大圆环,方向也不变;

而乙只沿小圆环跑.问:甲、乙可能相遇的位置距离A点的路程是多少?(路程按甲跑

的计算)

甲的方向

47.有甲、乙、丙三个人同时同向从同地出发,沿着周长为900米的环行跑道跑步,甲每分

钟360米,乙每分钟300米,丙每分钟210米,问他们至少各绕了多少圈后才能再次相

遇?

48.甲、乙两人,在一圆形跑道上同时同地出发,反向跑步,已知甲的速度是每分钟180%,

乙的速度是每分钟240〃?,在30分钟内,它们相遇了24次,问跑道的长度最多是多少米?

49.在一个周长500米的环形跑道上,艾迪和薇儿同时同地出发,背向而行,50秒后两人

第一次相遇,相遇后两人继续前行.已知艾迪比薇儿每秒多跑2米,请回答下列问题:

(1)薇儿的速度是多少?

(2)6分钟内两人共相遇多少次?

(3)第3次相遇后,艾迪至少还需要再跑多少米才能回到出发点?

50.某校运动会在400米环形跑道上进行一万米比赛,甲、乙两运动员同时起跑后,乙速超

过甲速,在第15分钟时甲加快速度,在第18分钟时甲追上乙并且开始超过乙,在第23

分钟时,甲再次追上乙,而在第23分50秒时,甲到达终点,那么乙跑完全程所用的时

间是多少分钟?

51.一个环形跑道一共两个跑道,1号跑道一共400米,2号跑道一共440米,而且直线跑

道都是100米.艾迪每分钟跑240米,薇儿每分钟跑200米.

(1)艾迪和薇儿从1号跑道同时出发逆时针跑,问:艾迪多久追上薇儿?

(2)艾迪和薇儿从2号跑道同时出发,相背而行,问:他们相遇5次用时多少分钟?

(3)艾迪和薇儿分别从1号和2号跑道的起点处,同时以同一速度顺时针跑步,问:艾

迪第一次追上薇儿时(可人并排),艾迪已经跑了多少米?

52.艾迪和薇儿在公园里沿着周长为30米的圆形花坛边玩相遇与追及的游戏,艾迪的跑步

速度为6米/秒,薇儿的跑步速度为4米/秒,两人约定,如果两人迎面相遇,那么艾迪就

立即回头;如果艾迪从后面追上薇儿,那么薇儿就立即回头,两人从花坛周围的某一点A

同时背向出发.所有转身的时间都忽略不计,且无论两人迎面相遇还是同向追及,都认

为是一次“相遇”.

(1)第1次“相遇”点距离出发点A的花坛代表的圆上最短的距离为多少米?

(2)第2次“相遇”点距离出发点4的花坛代表的圆上最短的距离为多少米?

(3)如果两人持续地跑下去,第2014次“相遇”点距离出发点A的花坛代表的圆上最

短的距离为多少米?

53.如图,点M、N分别是边长为4米的正方形ABS的一组对边A。、BC的中点,P、Q

两个动点同时从M出发,P沿正方形的边逆时针方向运动,速度是1米/秒;。沿正方形

的边顺时针方向运动,速度是2米/秒.求:

(1)第1秒时ANPQ的面积;

(2)第15秒时aNPQ的面积;

(3)第2015秒时aNPQ的面积.

54.圆形跑道上等距插着2015面旗子,甲与乙同时同向从某个旗子出发,当甲与乙再次同

时回到出发点时,甲跑了23圈,乙跑了13圈.不算起始点旗子位置,则甲正好在旗子

位置追上乙多少次?

55.如图,在一个正方形环形跑道上,甲乙丙三人同时从A点出发,逆时针环行.已知,

甲、乙、丙跑一圈的时间分别为6、10、16分钟.

(1)出发后多少分钟后,甲乙丙第一次同时经过A点?

(2)出发后多少分钟(分钟数为整数)后,以甲乙丙所在的位置为顶点所组成三角形的

面积第一次恰好为正方形ABCD面积的一半?

56.小明绕操场跑一圈5分钟,妈妈绕操场跑一圈用3分钟.

(1)如果小明和妈妈从同一起点同时同向出发,几分钟后两人再次同时到达起点?此时

妈妈和小明各跑了几圈?

(2)如果小明和妈妈从同一起点同时同向出发,几分钟后妈妈第一次追上小明?

(3)如果小明和妈妈从同一起点同时反向出发,几分钟后两人第四次相遇?

57.在周长为400米的椭圆跑道上,甲、乙两人分别骑自行车从相距300米的两点同时出发

沿着跑道相向而行,相遇后两人各自继续前进.已知甲的骑车速度是4米/秒,乙的骑车

速度是6米/秒.那么相遇6次时,两人至少骑了秒.

58.有一个圆形跑道,甲用40秒跑完一圈,乙跑的方向与甲相反,每15秒遇到甲一次.乙

跑完一圈需要几秒?

59.如图,一张方桌周围有16把椅子,依次编号1至16,现在小泉从1号椅子出发先逆时

针前进54个,再顺时针前进45个,又逆时针方向前进54个,这时小泉在几号椅子上?

回Ξ

回Ξ

回Ξ

m

Fl

60.小华和小张在一个圆形跑道上匀速跑步,两人同时同地出发,小华顺时针跑,每72秒

跑一圈;小张逆时针跑,每8。秒跑一圈.在跑道上划定以起点为中心吊圆弧区间,那

么两人同时在规定的区间内所持续的时间为多少秒?

环形跑道问题(提高卷)小学数学思维拓展高频考点培优卷(通

用版)

参考答案与试题解析

选择题(共9小题)

1.I型和H型电子玩具车各一辆,沿相同的两个圆形轨道跑动,I型每5分钟跑一圈,∏

型每3分钟跑一圈.某一时刻,I型和∏型恰好都开始跑第19圈,则I型比】I型提前()

分钟开始跑动.

A.32B.36C.38D.54

【分析】由题意知:两类型的玩具车都刚跑完了18圈,我们又知道/型车比〃型车每圈

多用5-3=2分钟,那可求18圈多用的时间是18X2=36分钟,这里多用的时间就是/

型比〃型提前的时间,即36分钟.

【解答】解:5-3=2(分钟)

18×2=36(分钟)

故选:B。

【点评】做此题,主要是要明白/型比〃型跑相同圈数多用时间就是应该提前的时间.

2.如图:AB是圆的直径,甲在A点,乙在B点,同时出发,甲逆时针方向走,乙顺时针

方向走,他们第一次相遇在C点,C点离4点160米,在。点第二次相遇,D点离B点

120米,那么这个圆周的周长是()米.

A.1440B.960C.720D.480

【分析】第一次相遇的时候两人行驶的路程之和是圆周长的一半,第二次相遇的时候两

人行的路程之和是圆周长的一倍半.由此知道甲一共行了3个160,这样就可以求出圆周

长的一半是多少.

【解答】解:

第二次相遇甲行的路程160X3=480(米)

圆周长的一半480-120=360(米)

圆周长360X2=720(米)

故选:Co

【点评】此题重点在分析第一次相遇和第二次相遇之间存在的关系,由此推算出第二次

相遇甲行的路程.

3.两个骑车人在不同的赛道上训练.骑车人A用圆形赛道,其直径是1千米;骑车人B用

直线赛道,其长度为5千米.骑车人A用10分钟完成3圈,而骑车人8用5分钟行进

了2个来回.那么骑车人4与骑车人B的速度比是()

A.1:1.6πB.π:10C.3:4D.3π:40

【分析】通过分析可知;A的速度为:πD×3÷10=π×1000×3÷10=300π(米/分)

B的速度为:5000X2X2÷5=4000(米/分)

其速度比为:A:B=TtX1000X3+10:5000×2×2÷5,据此解答即可.

【解答】解:由题目中的数据,求得A的速度为:πD×3÷10=π×1000×3÷10=300π

(米/分)

B的速度为:5000X2X2+5=4000(米/分)

其速度比为:A:B=300π:4000

=3π:40

故选:Do

【点评】求出各自的速度,进行比较即可.

4.兔子和乌龟在100米的环形跑道上赛跑.它们从同一地点同时出发,乌龟每爬行5米,

兔子超过它一圈.当乌龟爬完一圈时,兔子跑了()圈.

A.18B.20C.21D.22

【分析】题意可知:因为乌龟爬5米,兔子就超过它一圈,所以乌龟爬5米,兔子就跑

了100+5=105米,乌龟爬一圈,兔子就超过它IOO÷5=2O圈,则20*105=2100米,

2100÷100=21圈,从而问题得解.

【解答】解:100+5=105(米)

100÷5×(100+5)÷100

=20×105÷100

=21(圈)

答:当乌龟爬完1圈时,兔子跑了21圈.

故选:Co

【点评】解答此题的关键是明白:乌龟爬5米,兔子就跑了105米,乌龟爬一圈,兔子

就超过它100÷5=20圈,从而问题逐步得解.

5.如图,长方形ABCD中A8:8C=5:4.位于A点的第一只蚂蚁按A-BfCfofA的

方向,位于C点的第二只蚂蚁按CfBfA-O-C的方向同时出发,分别沿着长方形的

边爬行.如果两只蚂蚁第一次在B点相遇,则两只蚂蚁第二次相遇在()边上.

D

A.ABB.BCC.CDD.DA

【分析】由题干,第一次相遇在B点,可知第一只蚂蚁与第二只蚂蚁的速度比也是5:4,

那么相遇后再相遇,它们的路程比仍是5:4,令这个长方形的长和宽分别为5和4,由

此即可解决问题.

【解答】解:由题意可得蚂蚁的速度之比是5:4,

所以从8点出发再次相遇时它们爬行的路程比仍是5:4

令这个长方形的长和宽分别为5和4,

(5+4)×2=9×2=18,

5+4=9.

18×∣=10,

所以第一只蚂蚁从B点爬了10,

因为BC+CO=4+5=9,

所以此时第一只蚂蚁已经经过C点。点,

所以它们是在OA边上相遇.

故选:Do

【点评】此题的关键是抓住由路程比的关系得出速度比,根据长度比设出确切数据计算

出结果从而判断二者相遇地点.

6.池塘周围有一条道路,A、B、C三人从同一地点同时出发,A和B往逆时针方向走,C

往顺时针方向走.A以每分钟80米、8以每分钟65米的速度行走,C在出发后的20分

钟遇到A,再过2分钟遇到B,池塘的周长是()米.

【分析】由于A每分钟比B多行80-65米,所以20分钟后AC相遇时A比B多行了(80

-65)X20=300米,即此时AC与B相距300米,又C在遇到A后又过了两分钟遇到

了B,所以BC的速度和是300÷2=150米,则C的速度是每分钟150-65=85米,则

AC的速度和是每分钟85+80米,然后用两人的速度和乘两人的相遇时间,即得池塘周长

是多少米.

【解答】解:(80-65)×20÷2-65

=15×20÷2-65

=150-65

=85(米)

(80+85)×20

=165X20

=3300(米)

答:池塘周长是3300米.

故选:Do

【点评】首先根据速度差X共行时间=路程差求出AC相遇时,BC相距多少米是完成本

题的关键.

7.甲、乙两人同时同地沿400米环形跑道反向而行,经1分20秒相遇,如果两人同时同地

同向而行,甲跑3圈就追上乙.甲每秒跑()米.

A.2B.3C.2.4D.1.6

【分析】如果反向而行1分20秒即80秒相遇,则相遇时甲和乙正好行一周,则他们的

速度和是每秒400÷80=5米,如果同向而行甲跑3圈就追上乙,因为甲追上乙,就要比

乙多跑1圈就,那么乙跑了3-1=2圈;所以甲、乙的速度比是3:2,那么甲的速度就

占5米的工,然后用乘法解答即可.

3+2

【解答】解:1分20秒=80秒

400÷80=5(米/秒)

3:(3-1)=3:2

a

5×3+2=3(米/秒)

故选:B.

【点评】本题考查了环形跑道上的追及和相遇问题,关键是求出甲、乙两人的速度和与

速度比.

8.小泉和小美在一条400米的环形跑道上同一起点开始跑步,都跑了三圈,小美比小泉早

6分钟出发,反而比小泉晚到2分钟,小泉在跑了()米后追上小美.

A.900B.800C.720D.300

【分析】绕一条400米的跑道跑三圈的路程是400X3=1200(米),可理解为小泉跑1200

米时,用6分钟时间赶上小美,再用2分钟时间甩开小美,每分钟比小美多跑1200+(6+2)

米,根据“路程=速度X时间”,即可求出小泉跑多少米追上小美.

【解答】解:1200÷(6+2)×6

=1200÷8X6

=150X6

=900(米)

答:小泉在跑了900米后追上小美.

故选:A。

【点评】也可理解为小美每分钟比小泉少跑1200÷(6+2)米,她早跑6分钟,用1200

÷(6+2)米乘6就是小美先跑的路程,小泉要想追上小美,他跑的路程应等于小美先跑

的路程.

9.如图,赛车场的2400米跑道中套着1800米小跑道,大跑道与小跑道有1200米路程相重,

甲车以每秒40米的速度沿大跑道逆时针方向跑,乙以每秒20米的速度沿小跑道顺时针

方向跑,两人同时从两跑道的交点A处出发,那么他们第二次在跑道上相遇时,甲共跑

了()米.

A.4400B.3600C.2800D.1500

【分析】根据题意,甲乙第一次相遇的时间是2400÷(40+20)=40秒,第一次相遇甲

跑的路程是40X40=1600(米),第一次相遇乙跑的路程是40X20=800(米),然后再

求出乙跑完(1800-800)米的路程用的时间,即(1800-800)÷20=50秒,即乙回到

出发点A的时间,这时甲跑的路程是40X50=2000米,这时甲所处的地点在A点左

2000+1600-2400=1200米处,即与乙错开,再相遇还需要的时间是(2400-1200)÷

(40+20)=20秒,所以从第一次相遇到第二次相遇时间是50+20秒,第一次相遇用40

秒,所以在第二次相遇时,他们一共跑了40+50+20=110秒,再用甲的速度乘以跑的时

间,即可求出甲共跑的路程是多少.

【解答】解:第一次相遇的时间是:

2400÷(40+20)

=2400÷60

=40(秒)

第一次相遇甲行驶的路程是:

40X40=1600(米)

第一次相遇乙行驶的路程是:

40×20=800(米),

乙回到出发点4的时间:

(1800-800)÷20

=IOoO÷20

=50(秒)

甲行驶的路程是:

40×50=2000(米)

甲处的位置在4点左:

2000+1600-2400=1200(米)

再相遇还需要的时间是:

(2400-1200)÷(40+20)

=1200÷60

=20(秒)

甲一共跑的路程是:

40×(40+50+20)

=40X110

=4400(米)

答:甲共跑了4400米.

故选:Aa

【点评】此题主要考查了行程问题中速度、时间和路程的关系:速度X时间=路程,路

程÷时间=速度,路程÷速度=时间,要熟练掌握;解答此题的关键是求出甲第一次相

遇后到他们第二次在跑道上相遇时,甲又行驶的时间是多少.

二.填空题(共35小题)

10.边长为50cm的正方形ABCZ)的顶点A,C各有一只小虫,它们同时出发沿正方形的边

顺时针爬行,小虫甲每秒爬4cm,小虫乙每秒爬5cτm它们在顶点处转弯时都需要耗时2

秒。经过128秒其中一只小虫将首次追上另一只小虫。

【分析】甲虫爬一圈用时(200÷4+2X4=58)秒,乙虫爬一圈用时(200÷5+2×4=48)

秒,甲虫比乙虫多用10秒,10秒乙虫爬50a”,就到了£>;当甲虫再爬一圈时,甲虫爬

了400C加,到了A,乙虫转弯。时用2秒,它就爬了(250+250+5X8=540)CVn,它距

离甲虫IOCnn那么再过12秒钟,乙虫追上甲虫。答案即可求。

【解答】解:甲虫爬一圈用时(200÷∙4+2X4=58)秒,乙虫爬一圈用时(200÷5+2X4

=48)秒,甲虫比乙虫多用10秒,10秒乙虫爬50cm,就到了£>;当甲虫再爬一圈时,

甲虫爬了400on,到了A,乙虫转弯。时用2秒,它就爬了(250+250+5×8=540)cm,

它距离甲虫IOC«1,那么再过12秒钟,乙虫追上甲虫。

58+58+12

=116+12

=128(秒)

故答案为:128。

【点评】明确追击问题中数量间的关系是解决本题的关键。

11.一条圆形跑道,长400米,甲乙在同一地点同时刻反向而行,甲的速度是90米/分钟,

乙的速度是60米/分钟,运动20分钟的时候,两人相遇了7次。

【分析】由于是背向而行,所以每相遇一次,就行400米,所以先求出20分钟内行驶的

总路程,然后看总路程里面有几个400米,就相遇几次。

【解答】解:90+60=150(米/分)

150×20=3000(米)

3000÷400≈7(次)

答:两人相遇了7次.

故答案为:7。

【点评】本题考查的是环形行程问题中相遇问题,本题题关键是理解,每相遇一次行驶

的路程等于圆形跑道的周长。

12.甲、乙二人在400米环形跑道上进行IooOO米赛跑,两人从起点同时、同向出发,开始

时甲每秒跑8米,乙每秒跑6米,当甲每次追上乙后,甲每秒减少2米,乙每秒减少0.5

米,如此往复,直到甲发现乙第一次从后面追上自己开始,两人每秒都增速0.5米,这样

一直到终点.那么,领先者到达终点时,另一人距终点36⅛米。

【分析】我们知道“只有快者比慢者多跑一圈才能追上慢者”。结合题意可这样一步步求

解:①甲追乙1圈时,甲跑了8X[400÷(8-6)]=1600米,此时甲、乙的速度分别变

为6米/秒和5.5米/秒;②甲追上乙2圈时,甲跑了1600+6X[400÷(6-5.5)]=6400

米,此时甲、乙的速度分别变为4米/秒和5米/秒;③乙第一次追上甲时,甲跑了6400+4

×[400÷(5-4)]=8000(米),乙跑了8000-400=7600米,此时,甲、乙的速度分别

变为4.5米/秒和5.5米/秒(之后都是此速度);④乙跑到终点还需(10000-7600)÷5.5=

436白秒(与甲到达终点需要时间比较下),则知乙到达终点时,甲距终点(IooOO-8000)

474

-4.5x436看=2000-1963云=36言(米)。

【解答】解:8×1400÷(8-6)]=I600(米)

1600+6×[400÷(6-5.5)]=6400(米)

6400+4×[400÷(5-4)]=8000(米)

8000-400=7600(米)

(10000-7600)÷5.5=436台(秒)

474

(10000-8000)-4.5×436台=2000-1963^=36台(米)

答:领先者到达终点时,另一人距终点36白米。

故答案为:364.

【点评】此题主要考查环形跑道的追及问题,关键是弄明白随着速度的变化,快到终点

时乙的速度要快一些.

13.小明和小红在200米的环形跑道上跑步,他们从同一地点同向出发。如果小红先跑了

50米后小明再出发,则小明跑了100米后追上小红。如果小明跑了100米小红再出发,

那么小红跑了100米后被小明追上。

【分析】据题意,我们知道小明跑100米的时间于小红跑IOO-50=50米的时间相等,

则他们速度比为100:50=2:1;因为跑道是环形的,故把“如果小明跑了100米小红再

出发”看作是“小红在小明前面200-100=100米,两人同时出发”或者是看成“他们

从同一地点同向出发,小红先跑了100米后小明再出发",之后结合他们是速度比即可求

出答案。

【解答】解:100-50=50(米)

100:50=2:1

(200-100)÷(2-1)×1=100(米)

答:小红跑了100米后被小明追上。

故答案为:100。

【点评】解此题的关键是先求出他们的速度比,再用变换角度看问题,如:故把“如果

小明跑了100米小红再出发”看作是“小红在小明前面200-100=100米,两人同时出

发”或者是看成“他们从同一地点同向出发,小红先跑了100米后小明再出发",即可轻

松作答。

14.甲、乙两运动员在周长是400米的环形跑道上向同一方向竞走,已知乙的速度是平均每

分80米,甲的速度是乙的1.25倍,甲在乙的前面100米.问甲第二次追上乙时一共用了

35分.

【分析】甲在乙的前面100米,则第一次甲追上乙需要追及400-100米,则第二次追上

乙还需要再追及一周即400米,即甲第二次追上乙需要追及700米,又甲的速度是每分

80X1.25米,则用追及距离除以两人的速度差,即得第二次追上乙时一共用了多少分.

【解答】解:(400-100+400)÷(80×1.25-80)

=(300+400)÷(100-80)

=700÷20

=35(分).

答:甲第二次追上乙时一共用了35分.

【点评】本题体现了追及问题的基本关系式:追及距离÷速度差=追及时间.

15.如图所示,在一条400米的环形跑道上,A、8两点相距100米.甲、乙两人分别从A、

8两点同时出发,按逆时针方向跑步.甲每秒跑5米,乙每秒跑4米,每人每跑100米

都要停10秒钟,那么甲追上乙需要140秒.

【分析】根据题意和“追及问题”公式,可求得甲、乙在行程中都没停的情况下,甲追

上乙的用时为100÷(5-4)=IoO秒;在这段时间内甲停留了IOoX5÷100-1=4次,

即4X10=40秒,乙停留了IOoX4÷100-1=3次,即3X10=30秒;由此可知:甲跑

到IOOX5=500米追上乙时,乙正好跑了IooX4=400米并在此休息了10秒正准备跑,

至此即可得出答案.

【解答】解:100÷(5-4)=100(秒)

100×5÷100-1=4(次)

100+4X10=140(秒)

故答案为:140.

【点评】解此题的关键是要明白“甲跑到IOOX5=500米追上乙时,乙正好跑了IOOX4

=400米并在此休息了10秒正准备跑”,方可得出正确答案.

16.甲和乙两人分别从圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运

动,当乙走了250米以后,他们第一次相遇,在甲走完一周前80米处又第二次相遇。此

圆形场地的周长为1340米。

【分析】根据题意,我们知道“他们第一次相遇共走了此圆形场地的一半,即圆周的一

半;第二次相遇共走了一个圆周”,因第一次相遇乙走了250米,则第二次相遇乙走了第

一次的2倍,即250X2=500米,乙共走了250+250=750米;再结合“在甲走完一周前

80米处又第二次相遇”得知“乙走了半周多80米”,那么此圆形场地的半周长为750-

80=670米,之后便可求出问题答案。

【解答】解:250X2+250=750(米)

750-80=670(米)

670X2=1340(米)

答:此圆形场地的周长为1340米。

【点评】解此题,可画出草图帮助学生理解题意,找到解题的思路。

17.甲、乙、丙三人绕操场步行一周,甲走要3分钟,乙走要4分钟,丙走要6分钟.如果

三人同时同地同向出发绕操场行走,当他们三人第一次重新相遇在出发点时,三人共走

了9周.

【分析】甲、乙、丙三人环绕操场步行一周,甲要3分钟,乙要4分钟,丙要6分钟,

则三人第一次相遇的时间是3、4、6的最小公倍数,3、4、6最小公倍数是12,即12分

钟后在第一次相遇,由此即能求出相遇时各行了多少周,再相加即可.

【解答】解:3、4、6的最小公倍数是12,

甲:12+3=4(周)

乙:12÷4=3(周)

丙:12+6=2(周)

4+3+2=9(周).

即三人共走了9周.

故答案为:9.

【点评】本题关键是明确三人第一次相遇的时间是3、4、6的最小公倍数是完成本题的

关键.

18.一只老鼠从A点沿着长方形路线逃跑,一只花猫同时从4点朝长方形路线的另一方向

捕捉,结果在距离中点6米的C处,花猫捉住了老鼠。已知老鼠的速度是花猫的U,则

14

长方形的周长100米。

【分析】根据“老鼠的速度是花猫的u",我们不妨这样认为“在相同的时间内(它们从

A点到C点所用时间),老鼠跑11份的路程,则花猫就跑14份的路程”;据“在距离中

点6米的C处,花猫捉住了老鼠”可知“此时花猫比老鼠多跑了6X2=12米”;综上得

知:“花猫多跑的14-11=3份为12米”,则每份为12÷3=4米。那么,长方形的周长

为11+14=25份,也就是25X4=100米.

【解答】解:6X2=12(米)

12÷(14-11)=4(米)

4×(14+11)=100(米)

答:长方形的周长100米。

【点评】解此题的关键是''弄清它们从A点到C点,花猫比老鼠多跑了2个6米”和“这

些数量之间存在的关系”。

19.小姚、小勇两人在200米的环形跑道上相距100米背向出发,小姚每秒种跑2.3米,到

他们第三次相遇时总共用了100秒,此时小勇再跑130米就会回到自己的出发地.

【分析】先求出老人的速度之和进而求出小勇的速度,即可求出小勇100秒跑得路程,

即可得出结论.

【解答】解:两人共跑100+200X2=500(米),

速度和为50

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论