版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省黄石市黄石十四中学教育集团2023年数学九上期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,已知△AOB与△A1OB1是以点O为位似中心的位似图形,且相似比为1:2,点B的坐标为(-1,2),则点B1的坐标为()A.(2,-4) B.(1,-4) C.(-1,4) D.(-4,2)2.已知反比例函数,下列各点在此函数图象上的是()A.(3,4) B.(-2,6) C.(-2,-6) D.(-3,-4)3.如图,将两张长为10,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么,菱形周长的最大值为()A. B. C. D.214.一块矩形菜地的面积是120平方米,如果它的长减少2米,菜地就变成正方形,则原菜地的长是()A.10 B.12 C.13 D.145.如图,将绕点旋转得到,设点的坐标为,则点的坐标为()A. B.C. D.6.如图,△AOB缩小后得到△COD,△AOB与△COD的相似比是3,若C(1,2),则点A的坐标为()A.(2,4) B.(2,6) C.(3,6) D.(3,4)7.对于二次函数y=-(x+1)2+3,下列结论:①其图象开口向下;②其图象的对称轴为直线x=1;③其图象的顶点坐标为(-1,3);④当x>1时,y随x的增大而减小.其中正确结论的个数为()A.1 B.2 C.3 D.48.若方程x2+3x+c=0没有实数根,则c的取值范围是()A.c< B.c< C.c> D.c>9.m是方程的一个根,且,则的值为()A. B.1 C. D.10.二次函数的图象如图所示,下列结论:;;;;,其中正确结论的是A. B. C. D.11.一次函数y=(k﹣1)x+3的图象经过点(﹣2,1),则k的值是()A.﹣1 B.2 C.1 D.012.若数据2,x,4,8的平均数是4,则这组数据的中位数和众数是()A.3和2
B.4和2
C.2和2
D.2和4二、填空题(每题4分,共24分)13.如图,在中,,,将绕顶点顺时针旋转,得到,点、分别与点、对应,边分别交边、于点、,如果点是边的中点,那么______.14.如图,AB为⊙O的直径,点D是弧AC的中点,弦BD,AC交于点E,若DE=2,BE=4,则tan∠ABD=_____.15.已知和是方程的两个实数根,则__________.16.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,若∠P=40°,则∠ADC=____°.17.如图,菱形的边长为1,,以对角线为一边,在如图所示的一侧作相同形状的菱形,再依次作菱形,菱形,……,则菱形的边长为_______.18.如图,点、分别在的边、上,若,,.若,,则的长是__________.三、解答题(共78分)19.(8分)某学校为了增强学生体质,决定开设以下体育课外活动项目:A:篮球B:乒乓球C:羽毛球D:足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)20.(8分)温州某企业安排名工人生产甲、乙两种产品,每人每天生产件甲或件乙,甲产品每件可获利元.根据市场需求和生产经验,乙产品每天产量不少于件,当每天生产件时,每件可获利元,每增加件,当天平均每件利润减少元.设每天安排人生产乙产品.根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲_______________________乙_____________若每天生产甲产品可获得的利润比生产乙产品可获得的利润多元,求每件乙产品可获得的利润.21.(8分)如图,已知,以为直径作半圆,半径绕点顺时针旋转得到,点的对应点为,当点与点重合时停止.连接并延长到点,使得,过点作于点,连接,.(1)______;(2)如图,当点与点重合时,判断的形状,并说明理由;(3)如图,当时,求的长;(4)如图,若点是线段上一点,连接,当与半圆相切时,直接写出直线与的位置关系.22.(10分)如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:四边形BDFG为菱形;(2)若AG=13,CF=6,求四边形BDFG的周长.23.(10分)如图,为的直径,切于点,交的延长线于点,且.(1)求的度数.(2)若的半径为2,求的长.24.(10分)(1)已知,求的值;(2)已知直线分别截直线于点,截直线于点,且,,求的长.25.(12分)如图,AB=3AC,BD=3AE,又BD∥AC,点B,A,E在同一条直线上.求证:△ABD∽△CAE26.如图,在四边形ABCD中,AD∥BC,AD=2BC,E为AD的中点,连接BD,BE,∠ABD=90°(1)求证:四边形BCDE为菱形.(2)连接AC,若AC⊥BE,BC=2,求BD的长.
参考答案一、选择题(每题4分,共48分)1、A【解析】过B作BC⊥y轴于C,过B1作B1D⊥y轴于D,依据△AOB和△A1OB1相似,且相似比为1:2,即可得到,再根据△BOC∽△B1OD,可得OD=2OC=4,B1D=2BC=2,进而得出点B1的坐标为(2,-4).【详解】解:如图,过B作BC⊥y轴于C,过B1作B1D⊥y轴于D,
∵点B的坐标为(-1,2),
∴BC=1,OC=2,
∵△AOB和△A1OB1相似,且相似比为1:2,∴,∵∠BCO=∠B1DO=90°,∠BOC=∠B1OD,
∴△BOC∽△B1OD,
∴OD=2OC=4,B1D=2BC=2,
∴点B1的坐标为(2,-4),
故选:A.【点睛】本题考查的是位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.2、B【解析】依次把各个选项的横坐标代入反比例函数的解析式中,得到纵坐标的值,即可得到答案.【详解】解:A.把x=3代入得:,即A项错误,B.把x=-2代入得:,即B项正确,C.把x=-2代入得:,即C项错误,D.把x=-3代入得:,即D项错误,故选:B.【点睛】本题考查了反比例函数图象上点的坐标特征,正确掌握代入法是解题的关键.3、C【分析】画出图形,设菱形的边长为x,根据勾股定理求出周长即可.【详解】解:当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm,在Rt△ABC中,由勾股定理:x2=(10﹣x)2+22,解得:x=,∴4x=,即菱形的最大周长为cm.故选:C.【点睛】此题考查矩形的性质,本题的解答关键是怎样放置纸条使得到的菱形的周长最大,然后根据图形列方程.4、B【分析】设原菜地的长为,根据正方形的性质可得原矩形菜地的宽,再根据矩形的面积公式列出方程求解即可.【详解】设原菜地的长为,则原矩形菜地的宽由题意得:解得:,(不合题意,舍去)故选:B【点睛】本题考查了一元二次方程的实际应用,依据题意正确建立方程是解题关键.5、B【分析】由题意可知,点C为线段A的中点,故可根据中点坐标公式求解.对本题而言,旋转后的纵坐标与旋转前的纵坐标互为相反数,(旋转后的横坐标+旋转前的横坐标)÷2=-1,据此求解即可.【详解】解:∵绕点旋转得到,点的坐标为,∴旋转后点A的对应点的横坐标为:,纵坐标为-b,所以旋转后点的坐标为:.故选:B.【点睛】本题考查了旋转变换后点的坐标规律探求,属于常见题型,掌握求解的方法是解题的关键.6、C【解析】根据位似变换的性质计算即可.【详解】由题意得,点A与点C是对应点,△AOB与△COD的相似比是3,∴点A的坐标为(1×3,2×3),即(3,6),故选:C.【点睛】本题考查的是位似变换的性质,掌握在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k是解题的关键.7、C【解析】由抛物线解析式可确定其开口方向、对称轴、顶点坐标,可判断①②③,再利用增减性可判断④,可求得答案.【详解】∵∴抛物线开口向上,对称轴为直线x=−1,顶点坐标为(−1,3),故②不正确,①③正确,∵抛物线开口向上,且对称轴为x=−1,∴当x>−1时,y随x的增大而增大,∴当x>1时,y随x的增大而增大,故④正确,∴正确的结论有3个,故选:C.【点睛】考查二次函数的图象与性质,掌握二次函数的开口方向、对称轴、顶点坐标的求解方法是解题的关键.8、D【分析】根据方程没有实数根,则解得即可.【详解】由题意可知:△==9﹣4c<0,∴c>,故选:D.【点睛】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.9、A【解析】将m代入关于x的一元二次方程x2+nx+m=0,通过解该方程即可求得m+n的值.【详解】解:∵m是关于x的一元二次方程x2+nx+m=0的根,
∴m2+nm+m=0,
∴m(m+n+1)=0;
又∵m≠0,
∴m+n+1=0,
解得m+n=-1;
故选:A.【点睛】本题考查了一元二次方程的解的定义.一元二次方程ax2+bx+c=0(a≠0)的解一定满足该一元二次方程的关系式.10、C【分析】利用图象信息以及二次函数的性质一一判断即可;【详解】解:∵抛物线开口向下,∴a<0,∵对称轴x=﹣1=,∴b<0,∵抛物线交y轴于正半轴,∴c>0,∴abc>0,故①正确,∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②错误,∵x=﹣2时,y>0,∴4a﹣2b+c>0,∴4a+c>2b,故③正确,∵x=﹣1时,y>0,x=1时,y<0,∴a﹣b+c>0,a+b+c<0,∴(a﹣b+c)(a+b+c)<0∴,∴,故④错误,∵x=﹣1时,y取得最大值a﹣b+c,∴ax2+bx+c≤a﹣b+c,∴x(ax+b)≤a﹣b,故⑤正确.故选C.【点睛】本题考查二次函数的图象与系数的关系等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题,属于中考常考题型.11、B【分析】函数经过点(﹣1,1),把点的坐标代入解析式,即可求得k的值.【详解】解:根据题意得:﹣1(k﹣1)+3=1,解得:k=1.故选B.【点睛】本题主要考查了函数的解析式与图象的关系,满足解析式的点一定在图象上,图象上的点一定满足函数解析式.12、A【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数;据此先求得x的值,再将数据按从小到大排列,将中间的两个数求平均值即可得到中位数,众数是出现次数最多的数.【详解】这组数的平均数为=4,解得:x=2;所以这组数据是:2,2,4,8;中位数是(2+4)÷2=3,2在这组数据中出现2次,4出现一次,8出现一次,所以众数是2;故选:A.【点睛】本题考查平均数和中位数和众数的概念.二、填空题(每题4分,共24分)13、【分析】设AC=3x,AB=5x,可求BC=4x,由旋转的性质可得CB1=BC=4x,A1B1=5x,∠ACB=∠A1CB1,由题意可证△CEB1∽△DEB,可得,即可表示出BD,DE,再得到A1D的长,故可求解.【详解】∵∠ACB=90°,sinB=,∴设AC=3x,AB=5x,∴BC==4x,∵将△ABC绕顶点C顺时针旋转,得到△A1B1C,∴CB1=BC=4x,A1B1=5x,∠ACB=∠A1CB1,∵点E是A1B1的中点,∴CE=A1B1=2.5x=B1E=A1E,∴BE=BC−CE=1.5x,∵∠B=∠B1,∠CEB1=∠BED∴△CEB1∽△DEB∴∴BD=,DE=1.5x,∴A1D=A1E-DE=x,则x:=故答案为:.【点睛】本题考查了旋转的性质,解直角三角形,相似三角形的判定和性质,证△CEB1∽△DEB是本题的关键.14、【分析】根据圆周角定理得到∠DAC=∠B,得到△ADE∽△BDA,根据相似三角形的性质求出AD,根据正切的定义解答即可.【详解】∵点D是弧AC的中点,∴,∴∠DAC=∠ABD,又∵∠ADE=∠BDA,∴△ADE∽△BDA,∴,即,解得:AD=2,∵AB为⊙O的直径,∴∠ADB=90°,∴tan∠ABD=tan∠DAE.故答案为:.【点睛】本题考查了相似三角形的判定和性质、圆周角定理、正切的定义,掌握相似三角形的判定定理和性质定理是解答本题的关键.15、1【分析】根据根与系数的关系可得出x1+x2=-3、x1x2=-1,将其代入x12+x22=(x1+x2)2-2x1x2中即可求出结论.【详解】解:∵x1,x2是方程的两个实数根,
∴x1+x2=-3,x1x2=-1,
∴x12+x22=(x1+x2)2-2x1x2=(-3)2-2×(-1)=1.
故答案为:1.【点睛】本题考查了一元二次方程的根与系数的关系,牢记两根之和等于-、两根之积等于是解题的关键.16、115°【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连接OC,如右图所示,
由题意可得,∠OCP=90°,∠P=40°,
∴∠COB=50°,
∵OC=OB,
∴∠OCB=∠OBC=65°,
∵四边形ABCD是圆内接四边形,
∴∠D+∠ABC=180°,
∴∠D=115°,
故答案为:115°.【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件.17、【解析】过点作垂直OA的延长线与点,根据“直角三角形30°所对的直角边等于斜边的一半”求出,同样的方法求出和的长度,总结规律即可得出答案.【详解】过点作垂直OA的延长线与点根据题意可得,,则,∴在RT△中,又为菱形的对角线∴,故菱形的边长为;过点作垂直的延长线与点则,∴,∴在RT△中,又为菱形的对角线∴,故菱形的边长为;过点作垂直的延长线与点则,∴,∴在RT△中,又为菱形的对角线∴,故菱形的边长为;……∴菱形的边长为;故答案为.【点睛】本题考查的是菱形,难度较高,需要熟练掌握“在直角三角形中,30°的角所对的直角边等于斜边的一半”这一基本性质.18、【分析】由题意根据三角形内角和定理以及相似三角形的判定定理和相似三角形的性质即可求出答案.【详解】解:∵∠A=40°,∠B=65°,∴∠C=180°-40°-65°=75°,∴∠C=∠AED,∵∠A=∠A(公共角),∴△ADE∽△ABC,∴,∴.故答案为:.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,属于基础题型,难度较小.三、解答题(共78分)19、解:(1)1.(2)补全图形,如图所示:(3)列表如下:
甲
乙
丙
丁
甲
﹣﹣﹣
(乙,甲)
(丙,甲)
(丁,甲)
乙
(甲,乙)
﹣﹣﹣
(丙,乙)
(丁,乙)
丙
(甲,丙)
(乙,丙)
﹣﹣﹣
(丁,丙)
丁
(甲,丁)
(乙,丁)
(丙,丁)
﹣﹣﹣
∵所有等可能的结果为12种,其中符合要求的只有2种,∴恰好选中甲、乙两位同学的概率为.【解析】(1)由喜欢篮球的人数除以所占的百分比即可求出总人数:(人).(2)由总人数减去喜欢A,B及D的人数求出喜欢C的人数,补全统计图即可.(3)根据题意列出表格或画树状图,得出所有等可能的情况数,找出满足题意的情况数,即可求出所求的概率.20、(1)65-x,130-2x,130-2x;(2)每件乙产品可获得的利润是元.【分析】(1)根据题意即可列出代数式;(2)根据题意列出方程即可求解.【详解】解:由己知,每天安排人生产乙产品时,生产甲产品的有人,共生产甲产品件.在乙每件元获利的基础上,增加人,利润减少元每件,则乙产品的每件利润为.故答案为:由题意解得(不合题意,舍去)(元)答:每件乙产品可获得的利润是元【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系列方程.21、(1);(2)是等边三角形,理由见解析;(3)的长为或;(4)【分析】(1)先证AC垂直平分DB,即可证得AD=AB;(2)先证AD=BD,又因为AD=AB,可得△ABD是等边三角形;
(3)分当点在上时和当点在上时,由勾股定理列方程求解即可;(4)连结OC,证明OC∥AD,由与半圆相切,可得∠OCP=90°,即可得到与的位置关系.【详解】解:(1)∵为直径,∴∠ACB=90°,又∵∴AD=AB∴,故答案为10;(2)是等边三角形,理由如下:∵点与点重合,∴,∵,∴,∵,∴,∴是等边三角形;(3)∵,∴,当点在上时,则,,∵,,∴在和中,由勾股定理得,即,解得,∴;当点在上时,同理可得,解得,∴,综上所述,的长为或;(4).如图,连结OC,∵与半圆相切,∴OC⊥PC,∵△ADB为等腰三角形,,∴∠DAC=∠BAC,∵AO=OC∴∠CAO=∠ACO,∴∠DAC=∠ACO,∴OC∥AD,∴.【点睛】考查了圆的综合题,涉及的知识点有直角三角形的性质和圆的性质,等边三角形的判定和性质,垂直平分线的性质,勾股定理,,分类思想的运用,综合性较强,有一定的难度.22、(1)证明见解析;(2)1.【分析】(1)由BD=FG,BD//FG可得四边形BDFG是平行四边形,根据CE⊥BD可得∠CFA=∠CED=90°,根据直角三角形斜边中线的性质可得BD=DF=AC,即可证得结论;(2)设GF=x,则AF=13﹣x,AC=2x,利用勾股定理列方程可求出x的值,进而可得答案.【详解】(1)∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,BD//AG,∴∠CFA=∠CED=90°,∵点D是AC中点,∴DF=AC,∵∠ABC=90°,BD为AC的中线,∴BD=AC,∴BD=DF,∴平行四边形BGFD是菱形.(2)设GF=x,则AF=13﹣x,AC=2x,∵在Rt△ACF中,∠CFA=90°,∴AF2+CF2=AC2,即(13﹣x)2+62=(2x)2,解得:x=5,x=﹣(舍去),∵四边形BDFG是菱形,∴四边形BDFG的周长=4GF=1.【点睛】本题考查菱形的判定与性质及直角三角形斜边中线的性质,熟练掌握直角三角形斜边中线等于斜边一半的性质是解题关键.23、(1);(2).【分析】(1)根据等腰三角形性质和三角形外角性质求出∠COD=2∠A,求出∠D=∠COD,根据切线性质求出∠OCD=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版九年级化学化学使世界变得更加绚丽多彩教学课件
- 员工思想调查报告
- 甲状腺引流护理
- 《如何制定经营目标》课件
- 基于二零二四年度的股权转让合同
- 护理门诊申报答辩
- 自来水承包合同 3篇
- 2024年度电子合同签署平台开发与运营合同3篇
- 新生儿完整护理教程
- 春节园游会活动方案
- 大学生职业规划大赛报告书
- 2024中国联通黑龙江省分公司春季校园招聘公开引进高层次人才和急需紧缺人才笔试参考题库(共500题)答案详解版
- 01中国电信云计算产品体系架构
- 2024年-科技部技术转让合同等模板
- 产后康复ppt课件完整版-2024鲜版
- 2023年度中、美创新药获批情况跟踪报告:获批药物愈发多元化本土创新力量不断迸发-20240221
- 徐工集团招聘测评题库
- 《信息安全技术网络安全等级保护测评要求第4部分:物联网安全扩展要求》
- 高三生物一轮复习《生物变异在育种中的应用》课件
- 2024年吊篮应急预案(多场合应用)
- GA/T 2015-2023芬太尼类药物专用智能柜通用技术规范
评论
0/150
提交评论