人教A文科数课时试题及解析(57)随机事件的概率与古典概型_第1页
人教A文科数课时试题及解析(57)随机事件的概率与古典概型_第2页
人教A文科数课时试题及解析(57)随机事件的概率与古典概型_第3页
人教A文科数课时试题及解析(57)随机事件的概率与古典概型_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGEPAGE4课时作业(五十七)[第57讲随机事件的概率与古典概型][时间:35分钟分值:80分]eq\a\vs4\al\co1(基础热身)1.将一条长为6的线段分成长度为正整数的三条线段,则这三条线段可以构成三角形的概率为()A.eq\f(1,2)B.eq\f(1,3)C.eq\f(1,4)D.eq\f(1,5)2.从一批羽毛球产品中任取一个,其质量小于4.8g的概率为0.3,质量大于4.85g的概率为0.32,那么质量在[4.8,4.85](A.0.62B.0.38C.0.02D3.从含有两件正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,则取出的两件产品中恰有一件次品的概率是()A.eq\f(2,3)B.eq\f(1,3)C.eq\f(1,2)D.eq\f(1,4)4.从1,2,3,4,5这五个数中任取两个数,这两个数的和是奇数的概率为________.eq\a\vs4\al\co1(能力提升)5.把标号为1,2,3,4的四个小球随机地分发给甲、乙、丙、丁四个人,每人分得一个.事件“甲分得1号球”与事件“乙分得1号球”是()A.互斥但非对立事件B.对立事件C.相互独立事件D.以上都不对图K57-16.同时转动如图K57-1所示的两个转盘,记转盘甲得到的数为x,转盘乙得到的数为y,构成数对(x,y),则所有数对(x,y)中满足xy≤4的概率为()A.eq\f(7,16)B.eq\f(3,8)C.eq\f(1,2)D.eq\f(1,4)7.连续抛两枚骰子分别得到的点数是a、b,则向量(a,b)与向量(1,-1)垂直的概率是()A.eq\f(5,12)B.eq\f(1,6)C.eq\f(1,3)D.eq\f(1,2)8.从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是()A.eq\f(1,10)B.eq\f(3,10)C.eq\f(3,5)D.eq\f(9,10)9.甲、乙两人将参加某项测试,他们能达标的概率分别是0.8、0.7,则两人都达标的概率是________,两人中至少有一人达标的概率是________.10.在1,2,3,4,5五个数字中,若随机取出三个数字,则剩下两个数字都是奇数的概率是________.11.现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m12.(13分)在某次测验中,有6位同学的平均成绩为75分.用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:编号n12345成绩xn7076727072(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.eq\a\vs4\al\co1(难点突破)13.(12分)某日用品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:X12345fa0.20.45bc(1)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a,b,c的值;(2)在(1)的条件下,将等级系数为4的3件日用品记为x1,x2,x3,等级系数为5的2件日用品记为y1,y2,现从x1,x2,x3,y1,y2这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.

课时作业(五十七)【基础热身】1.B[解析]将长为6的线段分成长度为正整数的三条线段,只有三种情况:(1,1,4),(1,2,3),(2,2,2),能构成三角形的是(2,2,2),所以概率为P=eq\f(1,3).故选B.2.B[解析]设质量在[4.8,4.85](g)范围内的概率是P,那么P=1-0.3-0.32=0.38.故选B.3.A[解析]此种取法的一切可能的结果组成的基本事件有6个,即(a1,a2),(a1,b1),(a2,a1),(a2,b1),(b1,a1),(b1,a2).其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品.用A表示事件“取出的两件产品中恰有一件次品”,则事件A由4个基本事件(a1,b1),(a2,b1),(b1,a1),(b1,a2)组成,所以,P(A)=eq\f(4,6)=eq\f(2,3).故选A.4.eq\f(3,5)[解析]从1,2,3,4,5这五个数中任取两个数,共有10种结果:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),其中两数之和为奇数的有6种,所以概率为P=eq\f(6,10)=eq\f(3,5).【能力提升】5.A[解析]这两个事件不可能同时发生,并且也不是有一个必然发生,所以这两个事件是互斥事件但非对立事件.故选A.6.C[解析]数对(x,y)共有16个结果:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).其中满足xy≤4的有8个:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(3,1),(4,1),所以概率为P=eq\f(8,16)=eq\f(1,2).故选C.7.B[解析]连续抛两枚骰子分别得到的向量(a,b)有36个,因为向量(a,b)与向量(1,-1)垂直,所以a×1+b×(-1)=0,即a=b,这样的情况有6个,所以所求概率P=eq\f(6,36)=eq\f(1,6).故选B.8.D[解析]设3个红球分别为r1,r2,r3,2个白球分别为w1,w2.则从这5个球中任取3个球,通过列举可知共有10种情况,其中全为红球的情况有1种,故由古典概型的概率公式得P=1-eq\f(1,10)=eq\f(9,10).9.0.560.94[解析]两人均达标为0.8×0.7=0.56,两人都不达标的概率为(1-0.8)×(1-0.7)=0.06,所以两人中至少有一人达标的概率为1-0.06=0.94.10.eq\f(3,10)[解析]因为每次取出三个数,总剩下两个数,所以该问题等价于“在1,2,3,4,5五个数字中,随机取出两个数,则这两个数为奇数的概率”.从这五个数中取出两个数,有10种取法,而两个数都是奇数的只有3种,所以概率为P=eq\f(3,10).11.0.2[解析]从5根竹竿中一次随机抽取2根的可能的事件总数为10,它们的长度恰好相差0.3m的事件数为2,分别是:2.5和2.8,2.6和2.912.[解答](1)∵eq\x\to(x)=eq\f(1,6)eq\o(∑,\s\up6(6))eq\o(,\s\do4(n=1))xn=75,∴x6=6eq\x\to(x)-eq\o(∑,\s\up6(5))eq\o(,\s\do4(n=1))xn=6×75-70-76-72-70-72=90,s2=eq\f(1,6)eq\o(∑,\s\up6(6))eq\o(,\s\do4(n=1))(xn-eq\x\to(x))2=eq\f(1,6)(52+12+32+52+32+152)=49,∴s=7.(2)从5位同学中随机选取2位同学,共有如下10种不同的取法:{1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5},{3,4},{3,5},{4,5}.选出的2位同学中,恰有1位同学的成绩位于(68,75)的取法共有如下4种:{1,2},{2,3},{2,4},{2,5},故所求概率为eq\f(2,5).【难点突破】13.[解答](1)由频率分布表得a+0.2+0.45+b+c=1,即a+b+c=0.35.因为抽取的20件日用品中,等级系数为4的恰有3件,所以b=eq\f(3,20)=0.15.等级系数为5的恰有2件,所以c=eq\f(2,20)=0.1.从而a=0.35-b-c=0.1.所以a=0.1,b=0.15,c=0.1.(2)从日用品x1,x2,x3,y1,y2中任取两件,所有可能的结果为:{x1,x2},{x1,x3},{x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论