版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题6.1平行四边形的性质-重难点题型【北师大版】【知识点1平行四边形的性质】平行四边形的性质有:对边平行且相等,对角线互相平分,对角相等,邻角互补,两条平行线之间的距离处处相等,夹在两条平行线间的平行线段相等.【题型1平行四边形的性质(求长度)】【例1】(2023春•天府新区期末)如图,在平行四边形ABCD中,∠ABC的平分线交AD于点E,过点A作AF⊥BE,垂足为点F,若AF=5,BE=24,则CD的长为()A.8 B.13 C.16 D.18【变式1-1】(2023秋•九龙坡区校级期末)如图,在▱ABCD中,对角线AC、BD相交于点O,过点O作OE⊥AC,交AD于点E,连接CE,若△CDE的周长为8,则▱ABCD的周长为()A.8 B.10 C.16 D.20【变式1-2】(2023春•淮南月考)在▱ABCD中,对角线AC与BD相交于点O,△BOC的周长为20cm,BC=12cm,则AC+BD的长是()A.8cm B.16cm C.24cm D.32cm【变式1-3】(2023秋•让胡路区校级期末)在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC的长为.【题型2平行四边形的性质(求角度)】【例2】(2023•河北一模)如图,在平行四边形ABCD中,∠B=60°,AE平分∠BAD交BC于点E,若∠AED=80°,则∠EAC的度数是()A.10° B.15° C.20° D.25°【变式2-1】(2023春•锦州期末)在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,点E在▱ABCD的对角线AC上,AE=BE=BC,∠D=105°,则∠BAC的度数是()A.35° B.30° C.25° D.20°【变式2-2】(2023春•西安期末)如图,四边形ABCD为平行四边形,DE⊥BC于点E,BF⊥CD于点F,DE、BF相交于点H,若∠A=60°,则∠EHF的度数为()A.100° B.110° C.120° D.150°【变式2-3】(2023春•西湖区校级期中)如图所示,以▱ABCD的边AB为边向内作等边△ABE,使AD=AE,且点E在平行四边形内部,连接DE,CE,则∠CED的度数为()A.150° B.145° C.135° D.120°【题型3平行四边形的性质(求面积)】【例3】(2023春•西湖区校级期中)如图所示,点E为▱ABCD内一点,连接EA,EB,EC,ED,AC,已知△BCE的面积为2,△CED的面积为10,则阴影部分△ACE的面积为()A.5 B.6 C.7 D.8【变式3-1】(2023春•娄星区期末)如图,E、F分别是▱ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q.若S△APD=15,S△BQC=25,则阴影部分的面积为()A.40 B.45 C.50 D.55【变式3-2】(2023春•成华区期末)如图,▱ABCD的面积为S,点P是它内部任意一点,△PAD的面积为S1,△PBC的面积为S2,则S,S1,S2之间满足的关系是()A.S1+S2C.S1+【变式3-3】(2023秋•海曙区校级期末)如图,在▱ABCD中,点E在边AD上,过E作EF∥CD交对角线AC于点F,若要求△FBC的面积,只需知道下列哪个三角形的面积即可()A.△ECD B.△EBF C.△EBC D.△EFC【题型4平行四边形的性质与坐标】【例4】(2023秋•甘井子区期末)如图,平面直角坐标系中,点B,点D的坐标分别为(0,2)和(0,﹣2),以BD为对角线作▱ABCD,若点A的坐标为(2,1),则点C的坐标为.【变式4-1】(2023秋•绵阳期末)如图,在平行四边形OABC中,对角线相交于点E,OA边在x轴上,点O为坐标原点,已知点A(4,0),E(3,1),则点C的坐标为()A.(1,1) B.(1,2) C.(2,1) D.(2,2)【变式4-2】(2023秋•张店区期末)如图,已知▱ABCD三个顶点坐标是A(﹣1,0)、B(﹣2,﹣3)、C(2,﹣1),那么第四个顶点D的坐标是()A.(3,1) B.(3,2) C.(3,3) D.(3,4)【变式4-3】(2023•商河县校级模拟)如图,已知平行四边形OABC的顶点A,C分别在直线x=1和x=4上,点O是坐标原点,则点B的横坐标为()A.3 B.4 C.5 D.10【题型5平行四边形中的最值问题】【例5】(2023春•舞钢市期末)如图,△ABC中,AB=10,△ABC的面积是25,P是AB边上的一个动点,连接PC,以PA和PC为一组邻边作平行四边形APCQ,则线段AQ的最小值是()A.3 B.4 C.5 D.6【变式5-1】(2023春•河南期末)如图,在△ABC中,AB=AC=4,∠B=15°,点P是射线BA上的一个动点,以AP,PC为邻边作平行四边形APCQ,则边AQ的最小值为()A.4 B.2 C.23 D.43【变式5-2】(2023春•费县期末)如图,在△ABC中,∠BAC=30°,AB=AC=12,P为AB边上一动点,以PA,PC为边作平行四边形PAQC,则对角线PQ的长度的最小值为.【变式5-3】(2023•碑林区校级模拟)如图,在▱ABCD中,点E是对角线AC上一点,过点E作AC的垂线,交边AD于点P,交边BC于点Q,连接PC、AQ,若AC=6,PQ=4,则PC+AQ的最小值为.【题型6平行四边形中的折叠问题】【例6】(2023春•黄浦区期末)如图,在△ABC中,∠ABC=90°,点D在AB边上,将△ACD沿直线CD翻折后,点A落在点E处,如果四边形BCDE是平行四边形,那么∠ADC=.【变式6-1】(2023•江西)如图,将▱ABCD沿对角线AC翻折,点B落在点E处,CE交AD于点F,若∠B=80°,∠ACE=2∠ECD,FC=a,FD=b,则▱ABCD的周长为.【变式6-2】(2023•滨湖区二模)如图,在Rt△ABC中,∠ACB=90°,AC=3,D是边AB上一点,连接CD,将△ACD沿CD翻折得到△ECD,连接BE.若四边形BCDE是平行四边形,则BC的长为()A.3 B.3 C.23 D.32【变式6-3】(2023秋•锦江区校级期中)如图,将▱ABCD沿对角线BD折叠,使点A落在点E处,DE交BC于点F,连接CE,则下列结论:①BE=CD;②BF=DF;③S△BEF=S△DCF;④BD∥CE,其中正确的有()A.1个 B.2个 C.3个 D.4个专题6.1平行四边形的性质-重难点题型【北师大版】【知识点1平行四边形的性质】平行四边形的性质有:对边平行且相等,对角线互相平分,对角相等,邻角互补,两条平行线之间的距离处处相等,夹在两条平行线间的平行线段相等.【题型1平行四边形的性质(求长度)】【例1】(2023春•天府新区期末)如图,在平行四边形ABCD中,∠ABC的平分线交AD于点E,过点A作AF⊥BE,垂足为点F,若AF=5,BE=24,则CD的长为()A.8 B.13 C.16 D.18分析:首先利用平行四边形的性质及角平分线的性质得到AB=AE,然后利用等腰三角形的三线合一的性质得到BF=12BE,利用勾股定理求得【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵∠ABC的平分线交AD于点E,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE,∵AF⊥BE,∴BE=2BF,∴BF=12,∴AB=B∴CD=AB=13,故选:B.【变式1-1】(2023秋•九龙坡区校级期末)如图,在▱ABCD中,对角线AC、BD相交于点O,过点O作OE⊥AC,交AD于点E,连接CE,若△CDE的周长为8,则▱ABCD的周长为()A.8 B.10 C.16 D.20分析:由平行四边形ABCD的对角线相交于点O,OE⊥AC,根据线段垂直平分线的性质,可得AE=CE,得出AD+CD=16,继而可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,AB=CD,AD=BC,∵OE⊥AC,∴AE=CE,∴△CDE的周长为:CD+CE+DE=CD+CE+AE=AD+CD=8.∵平行四边形ABCD的周长为2(AD+CD),∴▱ABCD的周长为16,故选:C.【变式1-2】(2023春•淮南月考)在▱ABCD中,对角线AC与BD相交于点O,△BOC的周长为20cm,BC=12cm,则AC+BD的长是()A.8cm B.16cm C.24cm D.32cm分析:根据平行四边形的性质得到AO=CO=12AC,BO=DO=12BD,求得BO+CO=12AC+1【解答】解:∵四边形ABCD是平行四边形,∴AO=CO=12AC,BO=DO=∴BO+CO=12AC+12BD=1∵△BOC的周长=OB+OC+BC=20cm,BC=12cm,∴BO+CO=20﹣12=8(cm),∴AC+BD=2×8=16(cm),故选:B.【变式1-3】(2023秋•让胡路区校级期末)在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC的长为.分析:根据平行四边形的性质可得CD=AB=6,结合角平分线的定义,等腰三角形的性质可求解AF=AB=6,DE=DC=6,由EF=2即可求得BC的长.【解答】解:∵四边形ABCD为平行四边形,AB=6,∴CD=AB=6,AD∥BC,∴∠AFB=∠CBF,∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠ABF=∠AFB,∴AF=AB=6,同理DE=DC=6,如图1,∵EF=2,∴AE=AF﹣EF=6﹣2=4,∴AD=BC=AE+DE=4+6=10,如图2,∵EF=2,∴AE=AF+EF=6+2=8,∴AD=BC=AE+DE=6+8=14,综上所述,BC的长为10或14,故答案为:10或14.【题型2平行四边形的性质(求角度)】【例2】(2023•河北一模)如图,在平行四边形ABCD中,∠B=60°,AE平分∠BAD交BC于点E,若∠AED=80°,则∠EAC的度数是()A.10° B.15° C.20° D.25°分析:证△ABE是等边三角形,得AB=AE,再证△BAC≌△AED中(SAS),得∠BAC=∠AED=80°,即可求解.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠ADC=60°,AD∥BC,∴∠BAD=180°﹣∠B=180°﹣60°=120°,∵AE平分∠BAD,∴∠BAE=∠DAE=12∠∴∠B=∠DAE,△ABE是等边三角形,∴AB=AE,在△BAC和△AED中,AB=EA∠B=∠DAE∴△BAC≌△AED(SAS),∴∠BAC=∠AED=80°,∴∠EAC=∠BAC﹣∠BAE=80°﹣60°=20°,故选:C.【变式2-1】(2023春•锦州期末)在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,点E在▱ABCD的对角线AC上,AE=BE=BC,∠D=105°,则∠BAC的度数是()A.35° B.30° C.25° D.20°分析:根据平行四边形的性质得到∠ABC=∠D=105°,AD=BC,根据等腰三角形的性质得到∠EAB=∠EBA,∠BEC=∠ECB,根据三角形外角的性质得到∠ACB=2∠CAB,由三角形的内角和定理即可得到结论.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=105°,AD=BC,∵AD=AE=BE,∴BC=AE=BE,∴∠EAB=∠EBA,∠BEC=∠ECB,∵∠BEC=∠EAB+∠EBA=2∠EAB,∴∠ACB=2∠CAB,∴∠CAB+∠ACB=3∠CAB=180°﹣∠ABC=180°﹣105°=75°,∴∠BAC=25°,故选:C.【变式2-2】(2023春•西安期末)如图,四边形ABCD为平行四边形,DE⊥BC于点E,BF⊥CD于点F,DE、BF相交于点H,若∠A=60°,则∠EHF的度数为()A.100° B.110° C.120° D.150°分析:首先利用平行四边形的对角相等和角A的度数求得∠C的度数,然后根据垂直的定义求得∠CED=∠CFB=90°,最后利用四边形的内角和求得答案即可.【解答】解:∵四边形ABCD是平行四边形,∠A=60°,∴∠C=∠A=60°,∵DE⊥BC于点E,BF⊥CD于点F,∴∠CED=∠CFB=90°,∴∠EHF=360°﹣∠C﹣∠CFB﹣∠CED=360°﹣90°﹣90°﹣60°=120°,故选:C.【变式2-3】(2023春•西湖区校级期中)如图所示,以▱ABCD的边AB为边向内作等边△ABE,使AD=AE,且点E在平行四边形内部,连接DE,CE,则∠CED的度数为()A.150° B.145° C.135° D.120°分析:根据平行四边形的性质和等边三角形的性质可证明AD=AE=BE=BC,得∠ADE=∠AED,∠BCE=∠BEC,设∠ADE=∠AED=x,∠BCE=∠BEC=y,可得∠DAE=180°﹣2x,∠CBE=180°﹣2y,由平行四边形的邻角互补得出方程,求出x+y=150°,即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,∠BAD+∠ABC=180°,∵△ABE是等边三角形,∴AE=AB=BE,∠AEB=∠EAB=∠ABE=60°,∵AD=AE,∴AD=AE=BE=BC,∴∠ADE=∠AED,∠BCE=∠BEC,设∠ADE=∠AED=x,∠BCE=∠BEC=y,∴∠DAE=180°﹣2x,∠CBE=180°﹣2y,∴∠BAD=180°﹣2x+60°=240°﹣2x,∠ABC=240°﹣2y,∴∠BAD+∠ABC=240°﹣2x+240°﹣2y=180°,∴x+y=150°,∴∠CED=360°﹣150°﹣60°=150°,故选:A.【题型3平行四边形的性质(求面积)】【例3】(2023春•西湖区校级期中)如图所示,点E为▱ABCD内一点,连接EA,EB,EC,ED,AC,已知△BCE的面积为2,△CED的面积为10,则阴影部分△ACE的面积为()A.5 B.6 C.7 D.8分析:过点B作BF⊥CD于点F,设△ABE和△CDE的AB和CD边上的高分别为a和b,根据平行四边形的性质可得S△ABE+S△CDE=12S平行四边形ABCD,S△ABE+S△CBE+S阴影=12S平行四边形ABCD,进而可得S阴影=S△CDE﹣【解答】解:如图,过点B作BF⊥CD于点F,设△ABE和△CDE的AB和CD边上的高分别为a和b,∴S△ABE=12×AB×a,S△CDE=1∵a+b=BF,AB=CD,∴S△ABE+S△CDE=12×(AB×a+CD×b)=1∵S平行四边形ABCD=CD•BF,∴S△ABE+S△CDE=12S平行四边形∵S△ABE+S△CBE+S阴影=12S平行四边形∴S△ABE+S△CDE=S△ABE+S△CBE+S阴影,∴S阴影=S△CDE﹣S△CBE=10﹣2=8.故选:D.【变式3-1】(2023春•娄星区期末)如图,E、F分别是▱ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q.若S△APD=15,S△BQC=25,则阴影部分的面积为()A.40 B.45 C.50 D.55分析:连接E、F两点,由三角形的面积公式我们可以推出S△EFC=S△BCF,S△EFD=S△ADF,所以S△EFQ=S△BCQ,S△EFP=S△ADP,因此可以推出阴影部分的面积就是S△APD+S△BQC.【解答】解:如图,连接E、F两点,∵四边形ABCD是平行四边形,∴AB∥CD,∴△EFC的FC边上的高与△BCF的FC边上的高相等,∴S△EFC=S△BCF,∴S△EFQ=S△BCQ,同理:S△EFD=S△ADF,∴S△EFP=S△ADP,∵S△APD=15,S△BQC=25,∴S四边形EPFQ=S△APD+S△BQC=15+25=40,故选:A.【变式3-2】(2023春•成华区期末)如图,▱ABCD的面积为S,点P是它内部任意一点,△PAD的面积为S1,△PBC的面积为S2,则S,S1,S2之间满足的关系是()A.S1+S2C.S1+分析:根据题意,过点P作EF⊥AD交AD于点E,交BC的延长线于点F,然后根据图形和平行四边形的面积、三角形的面积,即可得到S和S1、S2之间的关系,本题得以解决.【解答】解:过点P作EF⊥AD交AD于点E,交BC的延长线于点F,∵四边形ABCD是平行四边形,∴AD=BC,∴S=BC•EF,S1=AD⋅PE∵EF=PE+PF,AD=BC,∴S1+S2=S故选:C.【变式3-3】(2023秋•海曙区校级期末)如图,在▱ABCD中,点E在边AD上,过E作EF∥CD交对角线AC于点F,若要求△FBC的面积,只需知道下列哪个三角形的面积即可()A.△ECD B.△EBF C.△EBC D.△EFC分析:过B作BM⊥AC于点M,过D作DN⊥AC于N,证明△ADN≌△CBM得DN=BM,由三角形的面积公式可得△BCF和△CDE的面积都等于△CDF的面积,便可得出答案.【解答】解:过B作BM⊥AC于点M,过D作DN⊥AC于N,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAC=∠ACB,在△ADN和△CBM中,∠DAN=∠BCM∠AND=∠CMB=90°∴△ADN≌△CBM(AAS),∴DN=BM,∵S△BCF=12CF•BM,S△CDF=12∴S△BCF=S△CDF,∵EF∥CD,∴S△CDE=S△CDF=S△BCF,故选:A.【题型4平行四边形的性质与坐标】【例4】(2023秋•甘井子区期末)如图,平面直角坐标系中,点B,点D的坐标分别为(0,2)和(0,﹣2),以BD为对角线作▱ABCD,若点A的坐标为(2,1),则点C的坐标为(﹣2,﹣1).分析:根据平行四边形的性质是中心对称图形即可解决问题.【解答】解:∵点B,点D的坐标分别为(0,2)和(0,﹣2),以BD为对角线作▱ABCD,∴点O是平行四边形的性质的对称中心,∵点A的坐标为(2,1),∴点C的坐标为:(﹣2,﹣1).故答案为:(﹣2,﹣1).【变式4-1】(2023秋•绵阳期末)如图,在平行四边形OABC中,对角线相交于点E,OA边在x轴上,点O为坐标原点,已知点A(4,0),E(3,1),则点C的坐标为()A.(1,1) B.(1,2) C.(2,1) D.(2,2)分析:分别过E,C两点作EF⊥x轴,CG⊥x轴,垂足分别为F,G,由平行四边形的性质可得CG=2EF,AG=2AF,结合A,E两点坐标可求解CG,OG的长,进而求解C点坐标.【解答】解:分别过E,C两点作EF⊥x轴,CG⊥x轴,垂足分别为F,G,∴EF∥CG,∵四边形ABCD为平行四边形,∴AE=CE,∴AG=2AF,CG=2EF,∵A(4,0),E(3,1),∴OA=4,OF=3,EF=1,∴AF=OA﹣OF=4﹣3=1,CG=2,∴AG=2,∴OG=OA﹣OG=4﹣2=2,∴C(2,2).故选:D.【变式4-2】(2023秋•张店区期末)如图,已知▱ABCD三个顶点坐标是A(﹣1,0)、B(﹣2,﹣3)、C(2,﹣1),那么第四个顶点D的坐标是()A.(3,1) B.(3,2) C.(3,3) D.(3,4)分析:过B作BE⊥x轴于E,过D作DM⊥x轴于M,过C作CF⊥BE于F,DM和CF交于N,求出△DCN≌△BAE,根据全等三角形的性质得出BE=DN,AE=CN,根据A、B、C的作求出OM和DM即可.【解答】解:过B作BE⊥x轴于E,过D作DM⊥x轴于M,过C作CF⊥BE于F,DM和CF交于N,则四边形EFNM是矩形,所以EF=MN,EM=FN,FN∥EM,∴∠EAB=∠AQC,∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC,∴∠AQC=∠DCN,∴∠DCN=∠EAB,在△DCN和△BAE中∠N=∠BEA=90°∠DCN=∠EAB∴△DCN≌△BAE(AAS),∴BE=DN,AE=CN,∵A(﹣1,0)、B(﹣2,﹣3)、C(2,﹣1),∴CN=AE=2﹣1=1,DN=BE=3,∴DM=3﹣1=2,OM=2+1=3,∴D的坐标为(3,2),故选:B.【变式4-3】(2023•商河县校级模拟)如图,已知平行四边形OABC的顶点A,C分别在直线x=1和x=4上,点O是坐标原点,则点B的横坐标为()A.3 B.4 C.5 D.10分析:过点B作BD⊥直线x=4,交直线x=4于点D,过点B作BE⊥x轴,交x轴于点E,由四边形OABC是平行四边形,得OA=BC,又由平行四边形的性质可推得∠OAF=∠BCD,则可由ASA证得△OAF≌△BCD,得出BD=OF=1,即可得出结果.【解答】解:过点B作BD⊥直线x=4,交直线x=4于点D,过点B作BE⊥x轴,交x轴于点E,直线x=1与OC交于点M,与x轴交于点F,直线x=4与AB交于点N,如图所示:∵四边形OABC是平行四边形,∴∠OAB=∠BCO,OC∥AB,OA=BC,∵直线x=1与直线x=4均垂直于x轴,∴AM∥CN,∴四边形ANCM是平行四边形,∴∠MAN=∠NCM,∴∠OAF=∠BCD,∵∠OFA=∠BDC=90°,∴∠FOA=∠DBC,在△OAF和△BCD中,∠FOA=∠DBCOA=BC∴△OAF≌△BCD(ASA).∴BD=OF=1,∴点B的横坐标为:OE=4+BD=4+1=5,故选:C.【题型5平行四边形中的最值问题】【例5】(2023春•舞钢市期末)如图,△ABC中,AB=10,△ABC的面积是25,P是AB边上的一个动点,连接PC,以PA和PC为一组邻边作平行四边形APCQ,则线段AQ的最小值是()A.3 B.4 C.5 D.6分析:根据平行四边形的性质得出AQ=PC,根据垂线段最短,当PC⊥AB时值最小解答即可.【解答】解:∵四边形APCQ是平行四边形,∴AQ=PC,由垂线段最短可得,当PC⊥AB时,AQ值最小,∵AB=10,△ABC的面积是25,∴PC=5,∴AQ=5,故选:C.【变式5-1】(2023春•河南期末)如图,在△ABC中,AB=AC=4,∠B=15°,点P是射线BA上的一个动点,以AP,PC为邻边作平行四边形APCQ,则边AQ的最小值为()A.4 B.2 C.23 D.43分析:根据平行四边形的性质得出AQ=PC,根据垂线段最短,当PC⊥AB时值最小解答即可.【解答】解:∵四边形APCQ是平行四边形,∴AQ=PC,由垂线段最短可得,当PC⊥AB时,AQ值最小,∵AB=AC=4,∠B=15°,∴∠PAC=2∠B=30°,在Rt△APC中,AC=4,∠PAC=30°,∴PC=2,∴AQ=2,故选:B.【变式5-2】(2023春•费县期末)如图,在△ABC中,∠BAC=30°,AB=AC=12,P为AB边上一动点,以PA,PC为边作平行四边形PAQC,则对角线PQ的长度的最小值为.分析:由平行四边形的性质可知O是PQ中点,PQ最短也就是PO最短,由点O是AC的中点,过O作AB的垂线OE,然后根据直角三角形的性质即可求出PQ的最小值.【解答】解:如图所示:∵四边形PAQC是平行四边形,∴AO=CO,OP=OQ,∵PQ最短也就是PO最短,过点O作OE⊥AB,当点P与E重合时,OP最短,OE即为所求,∵∠BAC=30°,∴OE=12∵AB=AC=12,∵AO=12AC∴OE=3,∴PQ的最小值=2OE=6,故答案为:6.【变式5-3】(2023•碑林区校级模拟)如图,在▱ABCD中,点E是对角线AC上一点,过点E作AC的垂线,交边AD于点P,交边BC于点Q,连接PC、AQ,若AC=6,PQ=4,则PC+AQ的最小值为.分析:利用平行四边形知识,将PC+AQ的最小值转化为MP+CP的最小值,再用勾股定理求出MC的长度,即可求解.【解答】解:过点A作AM∥PQ且AM=PQ,连接MP,∵AM∥PQ且AM=PQ,∴四边形AQPM是平行四边形,∴AQ=MP,PC+AQ的最小值转化为MP+CP的最小值,当M、P、C三点共线时,MP+CP的最小,∵AM∥PQ,AC⊥PQ,∴AM⊥AC,在Rt△MAC中,MC=AM2故答案为:213.【题型6平行四边形中的折叠问题】【例6】(2023春•黄浦区期末)如图,在△ABC中,∠ABC=90°,点D在AB边上,将△ACD沿直线CD翻折后,点A落在点E处,如果四边形BCDE是平行四边形,那么∠ADC=.分析:延长CD到点F,根据平行四边形的性质可得出BC∥DE,结合∠ABC=90°,即可得出∠ADE=90°,再根据翻折的性质即可得出∠ADF=∠EDF=45°,从而得出∠BDC=45°,由∠ADC、∠BDC互补即可得出结论.【解答】解:延长CD到点F,如图所示.∵四边形BCDE是平行四边形,∴BC∥DE,∵∠ABC=90°,∴∠BDE=90°,∴∠ADE=90°.∵将△ACD沿直线CD翻折后,点A落在点E处,∴∠ADF=∠EDF=12∠∴∠BDC=∠ADF=45°,∴∠ADC=180°﹣∠BDC=135°.故答案为:135°.【变式6-1】(2023•江西)如图,将▱ABCD沿对角线AC翻折,点B落在点E处,CE交AD于点F,若∠B=80°,∠ACE=2∠ECD,FC=a,FD=b,则▱ABCD的周长为.分析:由∠B=80°,四边形ABCD为平行四边形,折叠的性质可证明△AFC为等腰三角形.所以AF=FC=a.设∠ECD=x,则∠ACE=2x,在△ADC中,由三角形内角和定理可知,2x+2x+x+80°=180°,解得x=20°,由外角定理可证明△DFC为等腰三角形.所以DC=FC=a.故平行四边形ABCD的周长为2(DC+AD)=2(a+a+b)=2=4a+2b.【解答】解:∵∠B=80°,四边形ABCD为平行四边形.∴∠D=80°.由折叠可知∠ACB=∠ACE,又AD∥BC,∴∠DAC=∠ACB,∴∠ACE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度年福建省高校教师资格证之高等教育法规模拟预测参考题库及答案
- 2023年工业涂料水性色浆资金申请报告
- 二年级数学计算题专项练习1000题汇编
- 航空航天在国防
- 单元写作课程化实施路径
- 货币信贷政策业务技能竞赛活动方案
- 领会落实《关于大力实施可再生能源替代行动的指导意见》心得体会
- 2024年国际商品交易协议范本
- 2024金融中介协议模板指导手册
- 2024指定物业企业职工用工协议
- GB 14194-1993永久气体气瓶充装规定
- 如何做好行政执法与刑事司法相衔接课件
- 引发火灾的原因课件
- 汽车点火系实训项目
- 注氮机司机讲义
- 数据库工程师考试大纲
- 小学数学西南师大六年级上册七负数的初步认识 西师大数学六上《负数的初步认识》
- Proficy-Cimplicity-软件介绍及入门提纲
- 2023年上海联合产权交易所校园招聘笔试模拟试题及答案解析
- 加强区域环境管理,提高环境质量的关键
- 《思想道德与法治》 课件 第三章 弘扬中国精神
评论
0/150
提交评论