版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省长沙市长雅中学2023-2024学年数学九上期末学业质量监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.点在二次函数y=x2+3x﹣5的图像上,x与y对应值如下表:那么方程x2+3x﹣5=0的一个近似根是()A.1 B.1.1 C.1.2 D.1.32.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A. B.2 C. D.23.如图是二次函数y=ax2+bx+c的图象,对于下列说法:其中正确的有()①ac>0,②2a+b>0,③4ac<b2,④a+b+c<0,⑤当x>0时,y随x的增大而减小,A.5个 B.4个 C.3个 D.2个4.下列方程是一元二次方程的是()A. B.x2+5=0 C.x2+=8 D.x(x+3)=x2﹣15.下列四个手机应用图标中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.6.如图,在△ABC中,∠B=90°,AB=6,BC=8,将△ABC沿DE折叠,使点C落在△ABC边上C’处,并且C'D//BC,则CD的长是()A. B. C. D.7.已知点A(﹣3,a),B(﹣2,b),C(1,c)均在抛物线y=3(x+2)2+k上,则a,b,c的大小关系是()A.c<a<b B.a<c<b C.b<a<c D.b<c<a8.一次函数y=ax+b与反比例函数,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A. B. C. D.9.已知反比例函数的图象经过点(2,-2),则k的值为A.4 B. C.-4 D.-210.在中,,,则的值为()A. B. C. D.11.数据3、4、6、7、x的平均数是5,这组数据的中位数是()A.4 B.4.5 C.5 D.612.下列各数中,属于无理数的是()A. B. C. D.二、填空题(每题4分,共24分)13.方程x2=8x的根是______.14.若m+=3,则m2+=_____.15.从1,2,3,4,5,6,7,8,9这九个自然数中,任取一个数是奇数的概率是.16.如果,那么______(用向量、表示向量).17.如图,△ABC中,DE∥FG∥BC,AD∶DF∶FB=2∶3∶4,若EG=4,则AC=________.18.周末小明到商场购物,付款时想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,则选择“微信”支付方式的概率为____________.三、解答题(共78分)19.(8分)如图,在矩形ABCD中,AB=3,AD=6,点E在AD边上,且AE=4,EF⊥BE交CD于点F.(1)求证:△ABE∽△DEF;(2)求EF的长.20.(8分)数学兴趣小组几名同学到某商场调查发现,一种纯牛奶进价为每箱40元,厂家要求售价在40~70元之间,若以每箱70元销售平均每天销售30箱,价格每降低1元平均每天可多销售3箱.现该商场要保证每天盈利900元,同时又要使顾客得到实惠,那么每箱售价为多少元?21.(8分)如图,内接于,且为的直径.的平分线交于点,过点作的切线交的延长线于点,过点作于点,过点作于点.(1)求证:;(2)试猜想线段,,之间有何数量关系,并加以证明;(3)若,,求线段的长.22.(10分)如图,已知直线与轴交于点,与轴交于点,抛物线经过、两点并与轴的另一个交点为,且.(1)求抛物线的解析式;(2)点为直线上方对称轴右侧抛物线上一点,当的面积为时,求点的坐标;(3)在(2)的条件下,连接,作轴于,连接、,点为线段上一点,点为线段上一点,满足,过点作交轴于点,连接,当时,求的长.23.(10分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D为边CB上的一个动点(点D不与点B重合),过D作DO⊥AB,垂足为O,点B′在边AB上,且与点B关于直线DO对称,连接DB′,AD.(1)求证:△DOB∽△ACB;(2)若AD平分∠CAB,求线段BD的长;(3)当△AB′D为等腰三角形时,求线段BD的长.24.(10分)如图1,将三角板放在正方形上,使三角板的直角顶点与正方形的顶点重合,三角板的一边交于点,另一边交的延长线于点.(1)求证:;(2)如图2,将三角板绕点旋转,当时,连接交于点求证:;(3)如图3,将“正方形”改为“矩形”,且将三角板的直角顶点放于对角线(不与端点重合)上,使三角板的一边经过点,另一边交于点,若,求的值.25.(12分)如图,已知正方形,点在延长线上,点在延长线上,连接、、交于点,若,求证:.26.已知关于x的方程x2+mx+m-2=0.(1)若此方程的一个根为1,求m的值;(2)求证:不论m取何实数,此方程都有两个不相等的实数根.
参考答案一、选择题(每题4分,共48分)1、C【分析】观察表格可得0.04更接近于0,得到所求方程的近似根即可.【详解】解:观察表格得:方程x2+3x−5=0的一个近似根为1.2,故选:C.【点睛】此题考查了图象法求一元二次方程的近似根,弄清表格中的数据是解本题的关键.2、C【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【详解】过点D作DE⊥BC于点E.由图象可知,点F由点A到点D用时为as,△FBC的面积为acm1..∴AD=a.∴DE•AD=a.∴DE=1.当点F从D到B时,用s.∴BD=.Rt△DBE中,BE=,∵四边形ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a1=11+(a-1)1.解得a=.故选C.【点睛】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.3、C【分析】根据二次函数的图象与性质,结合图象分别得出a,c,以及b2﹣4ac的符号进而求出答案.【详解】①由图象可知:a>0,c<0,∴ac<0,故①错误;②由于对称轴可知:﹣<1,∴2a+b>0,故②正确;③由于抛物线与x轴有两个交点,∴△=b2﹣4ac>0,故③正确;④由图象可知:x=1时,y=a+b+c<0,故④正确;⑤由图象可得,当x>﹣时,y随着x的增大而增大,故⑤错误;故正确的有3个.故选:C.【点睛】此题考查二次函数的一般式y=ax2+bx+c的性质,熟记各字母对函数图象的决定意义是解题的关键.4、B【分析】根据一元二次方程的定义对各选项进行逐一分析即可.【详解】A、方程x+2y=1是二元一次方程,故本选项错误;B、方程x2+5=0是一元二次方程,故本选项正确;C、方程x2+=8是分式方程,故本选项错误;D、方程x(x+3)=x2-1是一元一次方程,故本选项错误.故选B.【点睛】本题考查的是一元二次方程的定义,熟知只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程是解答此题的关键.5、A【解析】A既是轴对称图形,又是中心对称图形;B是轴对称图形,不是中心对称图形;C既不是轴对称图形,也不是中心对称图形;D既不是轴对称图形,也不是中心对称图形;【详解】请在此输入详解!6、A【分析】先由求出AC,再利用平行条件得△AC'D∽△ABC,则对应边成比例,又CD=C′D,那么就可求出CD.【详解】∵∠B=90°,AB=6,BC=8,∴AC==10,∵将△ABC沿DE折叠,使点C落在AB边上的C'处,∴CD=C'D,∵C'D∥BC,∴△AC'D∽△ABC,∴,即,∴CD=,故选A.【点睛】本题考查了翻折变换(折叠问题),相似三角形的判定与性质,熟练掌握和灵活运用相关知识是解题的关键.7、C【分析】通过确定A、B、C三个点和函数对称轴的距离,确定对应y轴的大小.【详解】解:函数的对称轴为:x=﹣2,a=3>0,故开口向上,x=1比x=﹣3离对称轴远,故c最大,b为函数最小值,故选:C.【点睛】本题主要考查了二次函数的性质,能根据题意,巧妙地利用性质进行解题是解此题的关键8、C【分析】根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a-b确定符号,确定双曲线的位置.【详解】A.由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=的图象过一、三象限,所以此选项不正确;B.由一次函数图象过二、四象限,得a<0,交y轴正半轴,则b>0,满足ab<0,∴a−b<0,∴反比例函数y=的图象过二、四象限,所以此选项不正确;C.由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=的图象过一、三象限,所以此选项正确;D.由一次函数图象过二、四象限,得a<0,交y轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a、b的大小9、C【解析】∵反比例函数的图象经过点(2,-2),∴.故选C.10、D【分析】在Rt△ABC中,∠C=90°,则∠A+∠B=90°,根据互余两角的三角函数的关系就可以求解.【详解】解:在Rt△ABC中,∠C=90°,∠A+∠B=90°,则cosB=sinA=.故选:D.【点睛】本题考查了互余两角三角函数的关系,在直角三角形中,互为余角的两角的互余函数相等.11、C【分析】首先根据3、4、6、7、x这组数据的平均数求得x值,再根据中位数的定义找到中位数即可.【详解】由3、4、6、7、x的平均数是1,即得这组数据按照从小到大排列为3、4、1、6、7,则中位数为1.故选C【点睛】此题考查了平均数计算及中位数的定义,熟练运算平均数及掌握中位数的定义是解题关键.12、A【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合选项进行判断即可.【详解】A、是无理数,故本选项正确;
B、=2,是有理数,故本选项错误;
C、0,是有理数,故本选项错误;
D、1,是有理数,故本选项错误;
故选:A.【点睛】本题考查了无理数的定义,属于基础题,掌握无理数的三种形式是解答本题的关键.二、填空题(每题4分,共24分)13、x1=0,x2=1【解析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】解:x2=1x,x2-1x=0,x(x-1)=0,x=0,x-1=0,x1=0,x2=1,故答案为x1=0,x2=1.【点睛】考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.14、7【解析】分析:把已知等式两边平方,利用完全平方公式化简,即可求出答案.详解:把m+=3两边平方得:(m+)2=m2++2=9,则m2+=7,故答案为:7点睛:此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.15、.【解析】试题分析:∵从1到9这九个自然数中一共有5个奇数,∴任取一个数是奇数的概率是:.故答案是.考点:概率公式.16、【分析】将看作关于的方程,解方程即可.【详解】∵∴∴故答案为:【点睛】本题考查平面向量的知识,解题的关键是掌握平面向量的运算法则.17、12【解析】试题解析:根据平行线分线段成比例定理可得:故答案为18、【分析】利用概率公式直接写出答案即可.【详解】∵共“微信”、“支付宝”、“银行卡”三种支付方式,∴选择“微信”支付方式的概率为,故答案为:.【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.三、解答题(共78分)19、(1)见解析;(2).【分析】(1)根据矩形的性质可得∠A=∠D=90°,再根据同角的余角相等求出∠1=∠3,然后利用两角对应相等,两三角形相似证明;
(2)利用勾股定理列式求出BE,再求出DE,然后根据相似三角形对应边成比例列式求解即可.【详解】(1)证明:在矩形ABCD中,∠A=∠D=90°,
∴∠1+∠2=90°,
∵EF⊥BE,
∴∠2+∠3=180°-90°=90°,
∴∠1=∠3,
又∵∠A=∠D=90°,
∴△ABE∽△DEF;
(2)∵AB=3,AE=4,
∴BE==5,
∵AD=6,AE=4,
∴DE=AD-AE=6-4=2,
∵△ABE∽△DEF,
∴,即,
解得EF=.【点睛】本题考查了相似三角形的判定与性质,矩形的性质,利用同角的余角相等求出相等的锐角是证明三角形相似的关键.20、当每箱牛奶售价为50元时,平均每天的利润为900元.【解析】试题分析:本题可设每箱牛奶售价为x元,则每箱赢利(x-40)元,平均每天可售出(30+3(70-x))箱,根据每箱的盈利×销售的箱数=销售这种牛奶的盈利,据此即可列出方程,求出答案.试题解析:设每箱售价为x元,根据题意得:(x-40)[30+3(70-x)]=900化简得:x²-120x+3500=0解得:x1=50或x2=70(不合题意,舍去)∴x=50答:当每箱牛奶售价为50元时,平均每天的利润为900元21、(1)见解析;(2),证明见解析;(3)【分析】(1)连结OD,先由已知△ABD是等腰直角三角形,得DO⊥AB,再根据切线的性质得OD⊥PD,于是可得到DP∥AB;(2)由“一线三垂直模型”易得,进而可得.(3)利用勾股定理依次可求直径AB=10,,,得,再证明可得,,进而由求得PD即可.【详解】(1)证明:连结,如图,∵为的直径,∴,∵的平分线交于点,∴,∴,∴为等腰直角三角形,∴,∵为的切线,∴,∴;(2)答:,证明如下:∵是的直径,∴,∵,,∴,∴,∴,∵,∴,在和中,∴,∴,,∴,即.(3)解:在中,,∵为等腰直角三角形,∴∵,∴为等腰直角三角形,∴,在中,,∴,∵,,∴,∴,∴,,而,∴,∴.【点睛】本题考查了切线的性质:圆的切线垂直于过切点的半径.也考查了圆周角定理定理、等腰直角三角形的性质和三角形相似的判定与性质.解题关键是抓住45°角得等腰直角三角形进行解答.22、(3);(3)R(3,3);(3)3或.【分析】(3)求出A、B、C的坐标,把A、B的坐标代入抛物线解析式,解方程组即可得出结论;(3)设R(t,).作RK⊥y轴于K,RW⊥x轴于W,连接OR.根据计算即可;(3)在RH上截取RM=OA,连接CM、AM,AM交PE于G,作QF⊥OB于H.分两种情况讨论:①点E在F的左边;②点E在F的右边.【详解】(3)当x=0时y=3,∴C(0,3),∴OC=3.∵OC=3OA,∴OA=3,∴A(-3,0).当y=0时x=4,∴B(4,0).把A、B坐标代入得解得:,∴抛物线的解析式为.(3)设R(t,).作RK⊥y轴于K,RW⊥x轴于W,连接OR.∵∵,∴,(舍去),,∴R(3,3).(3)在RH上截取RM=OA,连接CM、AM,AM交PE于G,作QF⊥OB于H.分两种情况讨论:①当点E在F的左边时,如图3.∵CR=CO,∠CRM=∠COA,∴△CRM≌△COA,∴CM=CA,∠RCM=∠OCA,∴∠ACM=∠OCR=90°,∴∠CAM=∠CMA=45°.∵AC∥PE,∴∠CAM=∠AGE=45°.∵∠PEQ=45°,∴∠AGE=∠PEQ,∴AM∥EQ,∴∠MAH=∠QEF.∵∠QFE=∠MHA=90°,∴△QEF∽△MAH,∴.∵OA=3,OH=3,MH=RH-RM=3-3=3,∴AH=AO+OH=4,∴EF=3QF.设CP=m,∴QH=CP=m.∵OC=OH,∴∠OHC=45°,∴QF=FH=m,∴EF=3m,∴EH=3m.∵ACPE为平行四边形,∴AE=CP=m.∵EH=AH-AE=4-m,∴3m=4-m,∴m=3,∴CP=3.②当点E在F的右边时,设AM交QE于N.如图3.∵CR=CO,∠CRM=∠COA,∴△CRM≌△COA,∴CM=CA,∠RCM=∠OCA,∴∠ACM=∠OCR=90°,∴∠CAM=∠CMA=45°.∵AC∥PE,∴∠CAM=∠AGE=45°.∵∠PEQ=45°,∴∠AGE=∠PEQ=45°,∴∠ENG=∠ENA=90°.∵∠EQF+∠QEF=90°,∠EAN+∠QEF=90°,∴∠EQF=∠MAB.∵∠QFE=∠AHM=90°,∴△QEF∽△AMH,∴,∴QF=3EF.设CP=m,∴QH=CP=m.∵OC=OH,∴∠OHC=45°,∴QF=FH=m,∴EF=m,∴EH=m.∵ACPE为平行四边形,∴AE=CP=m.∵EH=AH-AE=4-m,∴4-m=m,∴m=,∴CP=.综上所述:CP的值为3或.【点睛】本题是二次函数的综合题目,涉及了相似三角形的判定与性质、平行四边形的性质,解答本题需要我们熟练各个知识点的内容,注意要分类讨论.23、(1)证明见试题解析;(2)1;(3).【解析】试题分析:(1)公共角和直角两个角相等,所以相似.(2)由(1)可得三角形相似比,设BD=x,CD,BD,BO用x表示出来,所以可得BD长.(3)同(2)原理,BD=B′D=x,AB′,B′O,BO用x表示,利用等腰三角形求BD长.试题解析:(1)证明:∵DO⊥AB,∴∠DOB=90°,∴∠ACB=∠DOB=90°,又∵∠B=∠B.∴△DOB∽△ACB.(2)∵AD平分∠CAB,DC⊥AC,DO⊥AB,∴DO=DC,在Rt△ABC中,AC=6,BC=,8,∴AB=10,∵△DOB∽△ACB,∴DO∶BO∶BD=AC∶BC∶AB=3∶4∶1,设BD=x,则DO=DC=x,BO=x,∵CD+BD=8,∴x+x=8,解得x=,1,即:BD=1.(3)∵点B与点B′关于直线DO对称,∴∠B=∠OB′D,BO=B′O=x,BD=B′D=x,∵∠B为锐角,∴∠OB′D也为锐角,∴∠AB′D为钝角,∴当△AB′D是等腰三角形时,AB′=DB′,∵AB′+B′O+BO=10,∴x+x+x=10,解得x=,即BD=,∴当△AB′D为等腰三角形时,BD=.点睛:角平分线问题的辅助线添加及其解题模型.①垂两边:如图(1),已知平分,过点作,,则.②截两边:如图(2),已知平分,点上,在上截取,则≌.③角平分线+平行线→等腰三角形:如图(3),已知平分,,则;如图(4),已知平分,,则.(1)(2)(3)(4)④三线合一(利用角平分线+垂线→等腰三角形):如图(1),已知平分,且,则,.(1)24、(1)证明见解析;(2)证明见解析;(3).【分析】(1)根据旋转全等模型利用正方形的性质,由可证明,从而可得结论;(2)根据正方形性质可知,结合已知可得;再由(1)可知是等腰直角三角形可得,从而证明,由相似三角形性质即可得出结论;(3)首先过点作,垂足为,交AD于M点,由有两角对应相等的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 消防管理员培训
- 《眩光开头动画》课件
- 公务员面试培训课件
- 《电路参数及其提取》课件
- 《瓦锡兰柴油发电机》课件
- 3桂花雨 公开课一等奖创新教学设计
- 统编版四年级下册语文第八单元 习作故事新编 公开课一等奖创新教学设计
- 年产xxx低压配电箱项目可行性研究报告(立项说明)
- 年产xxx防爆物防护器材项目建议书
- 新建LOW-E镀膜玻璃基片项目立项申请报告
- 园林景观工程施工方法及主要技术措施方案
- 电机制造中的无刷直流电机制造考核试卷
- 2024年山东省青岛市中考地理试题卷(含答案及解析)
- GB/T 1984-2024高压交流断路器
- 2024年执业医师考试-医师定期考核(人文医学)考试近5年真题集锦(频考类试题)带答案
- 期末(试题)-2024-2025学年人教PEP版(2024)英语三年级上册
- 院前急救技能竞赛(驾驶员)理论考试题库大全-上(选择题)
- 道法认识生命(作业)【后附答案解析】2024-2025学年七年级道德与法治上册(统编版2024)
- 9知法守法 依法维权 第2课时 守法不违法 (教学设计)-部编版道德与法治六年级上册
- 人教版(2019)必修 第三册Unit 1 Festivals and Celebrations Reading and Thinking教学设计
- 三方代付工程款协议书范本2024年
评论
0/150
提交评论